kubernetes.resource.k8s.io/v1alpha3.ResourceClaimTemplate
Explore with Pulumi AI
ResourceClaimTemplate is used to produce ResourceClaim objects.
This is an alpha type and requires enabling the DynamicResourceAllocation feature gate.
Create ResourceClaimTemplate Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new ResourceClaimTemplate(name: string, args: ResourceClaimTemplate, opts?: CustomResourceOptions);
@overload
def ResourceClaimTemplate(resource_name: str,
args: ResourceClaimTemplateInitArgs,
opts: Optional[ResourceOptions] = None)
@overload
def ResourceClaimTemplate(resource_name: str,
opts: Optional[ResourceOptions] = None,
spec: Optional[_resource_k8s_io.v1alpha3.ResourceClaimTemplateSpecArgs] = None,
metadata: Optional[_meta.v1.ObjectMetaArgs] = None)
func NewResourceClaimTemplate(ctx *Context, name string, args ResourceClaimTemplateArgs, opts ...ResourceOption) (*ResourceClaimTemplate, error)
public ResourceClaimTemplate(string name, ResourceClaimTemplateArgs args, CustomResourceOptions? opts = null)
public ResourceClaimTemplate(String name, ResourceClaimTemplateArgs args)
public ResourceClaimTemplate(String name, ResourceClaimTemplateArgs args, CustomResourceOptions options)
type: kubernetes:resource.k8s.io/v1alpha3:ResourceClaimTemplate
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args ResourceClaimTemplate
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args ResourceClaimTemplateInitArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args ResourceClaimTemplateArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args ResourceClaimTemplateArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args ResourceClaimTemplateArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
ResourceClaimTemplate Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
The ResourceClaimTemplate resource accepts the following input properties:
- Spec
Resource
Claim Template Spec Describes the ResourceClaim that is to be generated.
This field is immutable. A ResourceClaim will get created by the control plane for a Pod when needed and then not get updated anymore.
- Metadata
Pulumi.
Kubernetes. Meta. V1. Inputs. Object Meta - Standard object metadata
- Spec
Resource
Claim Template Spec Args Describes the ResourceClaim that is to be generated.
This field is immutable. A ResourceClaim will get created by the control plane for a Pod when needed and then not get updated anymore.
- Metadata
Object
Meta Args - Standard object metadata
- spec
Resource
Claim Template Spec Describes the ResourceClaim that is to be generated.
This field is immutable. A ResourceClaim will get created by the control plane for a Pod when needed and then not get updated anymore.
- metadata
Object
Meta - Standard object metadata
- spec
Resource
Claim Template Spec Describes the ResourceClaim that is to be generated.
This field is immutable. A ResourceClaim will get created by the control plane for a Pod when needed and then not get updated anymore.
- metadata
meta.v1.
Object Meta - Standard object metadata
- spec
resource_
k8s_ io.v1alpha3. Resource Claim Template Spec Args Describes the ResourceClaim that is to be generated.
This field is immutable. A ResourceClaim will get created by the control plane for a Pod when needed and then not get updated anymore.
- metadata
meta.v1.
Object Meta Args - Standard object metadata
- spec Property Map
Describes the ResourceClaim that is to be generated.
This field is immutable. A ResourceClaim will get created by the control plane for a Pod when needed and then not get updated anymore.
- metadata Property Map
- Standard object metadata
Outputs
All input properties are implicitly available as output properties. Additionally, the ResourceClaimTemplate resource produces the following output properties:
- Id string
- The provider-assigned unique ID for this managed resource.
- Id string
- The provider-assigned unique ID for this managed resource.
- id String
- The provider-assigned unique ID for this managed resource.
- id string
- The provider-assigned unique ID for this managed resource.
- id str
- The provider-assigned unique ID for this managed resource.
- id String
- The provider-assigned unique ID for this managed resource.
Supporting Types
CELDeviceSelector, CELDeviceSelectorArgs
- Expression string
Expression is a CEL expression which evaluates a single device. It must evaluate to true when the device under consideration satisfies the desired criteria, and false when it does not. Any other result is an error and causes allocation of devices to abort.
The expression's input is an object named "device", which carries the following properties:
- driver (string): the name of the driver which defines this device.
- attributes (map[string]object): the device's attributes, grouped by prefix (e.g. device.attributes["dra.example.com"] evaluates to an object with all of the attributes which were prefixed by "dra.example.com".
- capacity (map[string]object): the device's capacities, grouped by prefix.
Example: Consider a device with driver="dra.example.com", which exposes two attributes named "model" and "ext.example.com/family" and which exposes one capacity named "modules". This input to this expression would have the following fields:
device.driver device.attributes["dra.example.com"].model device.attributes["ext.example.com"].family device.capacity["dra.example.com"].modules
The device.driver field can be used to check for a specific driver, either as a high-level precondition (i.e. you only want to consider devices from this driver) or as part of a multi-clause expression that is meant to consider devices from different drivers.
The value type of each attribute is defined by the device definition, and users who write these expressions must consult the documentation for their specific drivers. The value type of each capacity is Quantity.
If an unknown prefix is used as a lookup in either device.attributes or device.capacity, an empty map will be returned. Any reference to an unknown field will cause an evaluation error and allocation to abort.
A robust expression should check for the existence of attributes before referencing them.
For ease of use, the cel.bind() function is enabled, and can be used to simplify expressions that access multiple attributes with the same domain. For example:
cel.bind(dra, device.attributes["dra.example.com"], dra.someBool && dra.anotherBool)
- Expression string
Expression is a CEL expression which evaluates a single device. It must evaluate to true when the device under consideration satisfies the desired criteria, and false when it does not. Any other result is an error and causes allocation of devices to abort.
The expression's input is an object named "device", which carries the following properties:
- driver (string): the name of the driver which defines this device.
- attributes (map[string]object): the device's attributes, grouped by prefix (e.g. device.attributes["dra.example.com"] evaluates to an object with all of the attributes which were prefixed by "dra.example.com".
- capacity (map[string]object): the device's capacities, grouped by prefix.
Example: Consider a device with driver="dra.example.com", which exposes two attributes named "model" and "ext.example.com/family" and which exposes one capacity named "modules". This input to this expression would have the following fields:
device.driver device.attributes["dra.example.com"].model device.attributes["ext.example.com"].family device.capacity["dra.example.com"].modules
The device.driver field can be used to check for a specific driver, either as a high-level precondition (i.e. you only want to consider devices from this driver) or as part of a multi-clause expression that is meant to consider devices from different drivers.
The value type of each attribute is defined by the device definition, and users who write these expressions must consult the documentation for their specific drivers. The value type of each capacity is Quantity.
If an unknown prefix is used as a lookup in either device.attributes or device.capacity, an empty map will be returned. Any reference to an unknown field will cause an evaluation error and allocation to abort.
A robust expression should check for the existence of attributes before referencing them.
For ease of use, the cel.bind() function is enabled, and can be used to simplify expressions that access multiple attributes with the same domain. For example:
cel.bind(dra, device.attributes["dra.example.com"], dra.someBool && dra.anotherBool)
- expression String
Expression is a CEL expression which evaluates a single device. It must evaluate to true when the device under consideration satisfies the desired criteria, and false when it does not. Any other result is an error and causes allocation of devices to abort.
The expression's input is an object named "device", which carries the following properties:
- driver (string): the name of the driver which defines this device.
- attributes (map[string]object): the device's attributes, grouped by prefix (e.g. device.attributes["dra.example.com"] evaluates to an object with all of the attributes which were prefixed by "dra.example.com".
- capacity (map[string]object): the device's capacities, grouped by prefix.
Example: Consider a device with driver="dra.example.com", which exposes two attributes named "model" and "ext.example.com/family" and which exposes one capacity named "modules". This input to this expression would have the following fields:
device.driver device.attributes["dra.example.com"].model device.attributes["ext.example.com"].family device.capacity["dra.example.com"].modules
The device.driver field can be used to check for a specific driver, either as a high-level precondition (i.e. you only want to consider devices from this driver) or as part of a multi-clause expression that is meant to consider devices from different drivers.
The value type of each attribute is defined by the device definition, and users who write these expressions must consult the documentation for their specific drivers. The value type of each capacity is Quantity.
If an unknown prefix is used as a lookup in either device.attributes or device.capacity, an empty map will be returned. Any reference to an unknown field will cause an evaluation error and allocation to abort.
A robust expression should check for the existence of attributes before referencing them.
For ease of use, the cel.bind() function is enabled, and can be used to simplify expressions that access multiple attributes with the same domain. For example:
cel.bind(dra, device.attributes["dra.example.com"], dra.someBool && dra.anotherBool)
- expression string
Expression is a CEL expression which evaluates a single device. It must evaluate to true when the device under consideration satisfies the desired criteria, and false when it does not. Any other result is an error and causes allocation of devices to abort.
The expression's input is an object named "device", which carries the following properties:
- driver (string): the name of the driver which defines this device.
- attributes (map[string]object): the device's attributes, grouped by prefix (e.g. device.attributes["dra.example.com"] evaluates to an object with all of the attributes which were prefixed by "dra.example.com".
- capacity (map[string]object): the device's capacities, grouped by prefix.
Example: Consider a device with driver="dra.example.com", which exposes two attributes named "model" and "ext.example.com/family" and which exposes one capacity named "modules". This input to this expression would have the following fields:
device.driver device.attributes["dra.example.com"].model device.attributes["ext.example.com"].family device.capacity["dra.example.com"].modules
The device.driver field can be used to check for a specific driver, either as a high-level precondition (i.e. you only want to consider devices from this driver) or as part of a multi-clause expression that is meant to consider devices from different drivers.
The value type of each attribute is defined by the device definition, and users who write these expressions must consult the documentation for their specific drivers. The value type of each capacity is Quantity.
If an unknown prefix is used as a lookup in either device.attributes or device.capacity, an empty map will be returned. Any reference to an unknown field will cause an evaluation error and allocation to abort.
A robust expression should check for the existence of attributes before referencing them.
For ease of use, the cel.bind() function is enabled, and can be used to simplify expressions that access multiple attributes with the same domain. For example:
cel.bind(dra, device.attributes["dra.example.com"], dra.someBool && dra.anotherBool)
- expression str
Expression is a CEL expression which evaluates a single device. It must evaluate to true when the device under consideration satisfies the desired criteria, and false when it does not. Any other result is an error and causes allocation of devices to abort.
The expression's input is an object named "device", which carries the following properties:
- driver (string): the name of the driver which defines this device.
- attributes (map[string]object): the device's attributes, grouped by prefix (e.g. device.attributes["dra.example.com"] evaluates to an object with all of the attributes which were prefixed by "dra.example.com".
- capacity (map[string]object): the device's capacities, grouped by prefix.
Example: Consider a device with driver="dra.example.com", which exposes two attributes named "model" and "ext.example.com/family" and which exposes one capacity named "modules". This input to this expression would have the following fields:
device.driver device.attributes["dra.example.com"].model device.attributes["ext.example.com"].family device.capacity["dra.example.com"].modules
The device.driver field can be used to check for a specific driver, either as a high-level precondition (i.e. you only want to consider devices from this driver) or as part of a multi-clause expression that is meant to consider devices from different drivers.
The value type of each attribute is defined by the device definition, and users who write these expressions must consult the documentation for their specific drivers. The value type of each capacity is Quantity.
If an unknown prefix is used as a lookup in either device.attributes or device.capacity, an empty map will be returned. Any reference to an unknown field will cause an evaluation error and allocation to abort.
A robust expression should check for the existence of attributes before referencing them.
For ease of use, the cel.bind() function is enabled, and can be used to simplify expressions that access multiple attributes with the same domain. For example:
cel.bind(dra, device.attributes["dra.example.com"], dra.someBool && dra.anotherBool)
- expression String
Expression is a CEL expression which evaluates a single device. It must evaluate to true when the device under consideration satisfies the desired criteria, and false when it does not. Any other result is an error and causes allocation of devices to abort.
The expression's input is an object named "device", which carries the following properties:
- driver (string): the name of the driver which defines this device.
- attributes (map[string]object): the device's attributes, grouped by prefix (e.g. device.attributes["dra.example.com"] evaluates to an object with all of the attributes which were prefixed by "dra.example.com".
- capacity (map[string]object): the device's capacities, grouped by prefix.
Example: Consider a device with driver="dra.example.com", which exposes two attributes named "model" and "ext.example.com/family" and which exposes one capacity named "modules". This input to this expression would have the following fields:
device.driver device.attributes["dra.example.com"].model device.attributes["ext.example.com"].family device.capacity["dra.example.com"].modules
The device.driver field can be used to check for a specific driver, either as a high-level precondition (i.e. you only want to consider devices from this driver) or as part of a multi-clause expression that is meant to consider devices from different drivers.
The value type of each attribute is defined by the device definition, and users who write these expressions must consult the documentation for their specific drivers. The value type of each capacity is Quantity.
If an unknown prefix is used as a lookup in either device.attributes or device.capacity, an empty map will be returned. Any reference to an unknown field will cause an evaluation error and allocation to abort.
A robust expression should check for the existence of attributes before referencing them.
For ease of use, the cel.bind() function is enabled, and can be used to simplify expressions that access multiple attributes with the same domain. For example:
cel.bind(dra, device.attributes["dra.example.com"], dra.someBool && dra.anotherBool)
DeviceClaim, DeviceClaimArgs
- Config
List<Device
Claim Configuration> - This field holds configuration for multiple potential drivers which could satisfy requests in this claim. It is ignored while allocating the claim.
- Constraints
List<Device
Constraint> - These constraints must be satisfied by the set of devices that get allocated for the claim.
- Requests
List<Device
Request> - Requests represent individual requests for distinct devices which must all be satisfied. If empty, nothing needs to be allocated.
- Config
[]Device
Claim Configuration - This field holds configuration for multiple potential drivers which could satisfy requests in this claim. It is ignored while allocating the claim.
- Constraints
[]Device
Constraint - These constraints must be satisfied by the set of devices that get allocated for the claim.
- Requests
[]Device
Request - Requests represent individual requests for distinct devices which must all be satisfied. If empty, nothing needs to be allocated.
- config
List<Device
Claim Configuration> - This field holds configuration for multiple potential drivers which could satisfy requests in this claim. It is ignored while allocating the claim.
- constraints
List<Device
Constraint> - These constraints must be satisfied by the set of devices that get allocated for the claim.
- requests
List<Device
Request> - Requests represent individual requests for distinct devices which must all be satisfied. If empty, nothing needs to be allocated.
- config
Device
Claim Configuration[] - This field holds configuration for multiple potential drivers which could satisfy requests in this claim. It is ignored while allocating the claim.
- constraints
Device
Constraint[] - These constraints must be satisfied by the set of devices that get allocated for the claim.
- requests
Device
Request[] - Requests represent individual requests for distinct devices which must all be satisfied. If empty, nothing needs to be allocated.
- config
Sequence[resource_
k8s_ io.v1alpha3. Device Claim Configuration] - This field holds configuration for multiple potential drivers which could satisfy requests in this claim. It is ignored while allocating the claim.
- constraints
Sequence[resource_
k8s_ io.v1alpha3. Device Constraint] - These constraints must be satisfied by the set of devices that get allocated for the claim.
- requests
Sequence[resource_
k8s_ io.v1alpha3. Device Request] - Requests represent individual requests for distinct devices which must all be satisfied. If empty, nothing needs to be allocated.
- config List<Property Map>
- This field holds configuration for multiple potential drivers which could satisfy requests in this claim. It is ignored while allocating the claim.
- constraints List<Property Map>
- These constraints must be satisfied by the set of devices that get allocated for the claim.
- requests List<Property Map>
- Requests represent individual requests for distinct devices which must all be satisfied. If empty, nothing needs to be allocated.
DeviceClaimConfiguration, DeviceClaimConfigurationArgs
- Opaque
Opaque
Device Configuration - Opaque provides driver-specific configuration parameters.
- Requests List<string>
- Requests lists the names of requests where the configuration applies. If empty, it applies to all requests.
- Opaque
Opaque
Device Configuration - Opaque provides driver-specific configuration parameters.
- Requests []string
- Requests lists the names of requests where the configuration applies. If empty, it applies to all requests.
- opaque
Opaque
Device Configuration - Opaque provides driver-specific configuration parameters.
- requests List<String>
- Requests lists the names of requests where the configuration applies. If empty, it applies to all requests.
- opaque
Opaque
Device Configuration - Opaque provides driver-specific configuration parameters.
- requests string[]
- Requests lists the names of requests where the configuration applies. If empty, it applies to all requests.
- opaque
resource_
k8s_ io.v1alpha3. Opaque Device Configuration - Opaque provides driver-specific configuration parameters.
- requests Sequence[str]
- Requests lists the names of requests where the configuration applies. If empty, it applies to all requests.
- opaque Property Map
- Opaque provides driver-specific configuration parameters.
- requests List<String>
- Requests lists the names of requests where the configuration applies. If empty, it applies to all requests.
DeviceConstraint, DeviceConstraintArgs
- Match
Attribute string MatchAttribute requires that all devices in question have this attribute and that its type and value are the same across those devices.
For example, if you specified "dra.example.com/numa" (a hypothetical example!), then only devices in the same NUMA node will be chosen. A device which does not have that attribute will not be chosen. All devices should use a value of the same type for this attribute because that is part of its specification, but if one device doesn't, then it also will not be chosen.
Must include the domain qualifier.
- Requests List<string>
- Requests is a list of the one or more requests in this claim which must co-satisfy this constraint. If a request is fulfilled by multiple devices, then all of the devices must satisfy the constraint. If this is not specified, this constraint applies to all requests in this claim.
- Match
Attribute string MatchAttribute requires that all devices in question have this attribute and that its type and value are the same across those devices.
For example, if you specified "dra.example.com/numa" (a hypothetical example!), then only devices in the same NUMA node will be chosen. A device which does not have that attribute will not be chosen. All devices should use a value of the same type for this attribute because that is part of its specification, but if one device doesn't, then it also will not be chosen.
Must include the domain qualifier.
- Requests []string
- Requests is a list of the one or more requests in this claim which must co-satisfy this constraint. If a request is fulfilled by multiple devices, then all of the devices must satisfy the constraint. If this is not specified, this constraint applies to all requests in this claim.
- match
Attribute String MatchAttribute requires that all devices in question have this attribute and that its type and value are the same across those devices.
For example, if you specified "dra.example.com/numa" (a hypothetical example!), then only devices in the same NUMA node will be chosen. A device which does not have that attribute will not be chosen. All devices should use a value of the same type for this attribute because that is part of its specification, but if one device doesn't, then it also will not be chosen.
Must include the domain qualifier.
- requests List<String>
- Requests is a list of the one or more requests in this claim which must co-satisfy this constraint. If a request is fulfilled by multiple devices, then all of the devices must satisfy the constraint. If this is not specified, this constraint applies to all requests in this claim.
- match
Attribute string MatchAttribute requires that all devices in question have this attribute and that its type and value are the same across those devices.
For example, if you specified "dra.example.com/numa" (a hypothetical example!), then only devices in the same NUMA node will be chosen. A device which does not have that attribute will not be chosen. All devices should use a value of the same type for this attribute because that is part of its specification, but if one device doesn't, then it also will not be chosen.
Must include the domain qualifier.
- requests string[]
- Requests is a list of the one or more requests in this claim which must co-satisfy this constraint. If a request is fulfilled by multiple devices, then all of the devices must satisfy the constraint. If this is not specified, this constraint applies to all requests in this claim.
- match_
attribute str MatchAttribute requires that all devices in question have this attribute and that its type and value are the same across those devices.
For example, if you specified "dra.example.com/numa" (a hypothetical example!), then only devices in the same NUMA node will be chosen. A device which does not have that attribute will not be chosen. All devices should use a value of the same type for this attribute because that is part of its specification, but if one device doesn't, then it also will not be chosen.
Must include the domain qualifier.
- requests Sequence[str]
- Requests is a list of the one or more requests in this claim which must co-satisfy this constraint. If a request is fulfilled by multiple devices, then all of the devices must satisfy the constraint. If this is not specified, this constraint applies to all requests in this claim.
- match
Attribute String MatchAttribute requires that all devices in question have this attribute and that its type and value are the same across those devices.
For example, if you specified "dra.example.com/numa" (a hypothetical example!), then only devices in the same NUMA node will be chosen. A device which does not have that attribute will not be chosen. All devices should use a value of the same type for this attribute because that is part of its specification, but if one device doesn't, then it also will not be chosen.
Must include the domain qualifier.
- requests List<String>
- Requests is a list of the one or more requests in this claim which must co-satisfy this constraint. If a request is fulfilled by multiple devices, then all of the devices must satisfy the constraint. If this is not specified, this constraint applies to all requests in this claim.
DeviceRequest, DeviceRequestArgs
- Device
Class stringName DeviceClassName references a specific DeviceClass, which can define additional configuration and selectors to be inherited by this request.
A class is required. Which classes are available depends on the cluster.
Administrators may use this to restrict which devices may get requested by only installing classes with selectors for permitted devices. If users are free to request anything without restrictions, then administrators can create an empty DeviceClass for users to reference.
- Name string
Name can be used to reference this request in a pod.spec.containers[].resources.claims entry and in a constraint of the claim.
Must be a DNS label.
- Admin
Access bool - AdminAccess indicates that this is a claim for administrative access to the device(s). Claims with AdminAccess are expected to be used for monitoring or other management services for a device. They ignore all ordinary claims to the device with respect to access modes and any resource allocations.
- Allocation
Mode string AllocationMode and its related fields define how devices are allocated to satisfy this request. Supported values are:
ExactCount: This request is for a specific number of devices. This is the default. The exact number is provided in the count field.
All: This request is for all of the matching devices in a pool. Allocation will fail if some devices are already allocated, unless adminAccess is requested.
If AlloctionMode is not specified, the default mode is ExactCount. If the mode is ExactCount and count is not specified, the default count is one. Any other requests must specify this field.
More modes may get added in the future. Clients must refuse to handle requests with unknown modes.
- Count int
- Count is used only when the count mode is "ExactCount". Must be greater than zero. If AllocationMode is ExactCount and this field is not specified, the default is one.
- Selectors
List<Device
Selector> - Selectors define criteria which must be satisfied by a specific device in order for that device to be considered for this request. All selectors must be satisfied for a device to be considered.
- Device
Class stringName DeviceClassName references a specific DeviceClass, which can define additional configuration and selectors to be inherited by this request.
A class is required. Which classes are available depends on the cluster.
Administrators may use this to restrict which devices may get requested by only installing classes with selectors for permitted devices. If users are free to request anything without restrictions, then administrators can create an empty DeviceClass for users to reference.
- Name string
Name can be used to reference this request in a pod.spec.containers[].resources.claims entry and in a constraint of the claim.
Must be a DNS label.
- Admin
Access bool - AdminAccess indicates that this is a claim for administrative access to the device(s). Claims with AdminAccess are expected to be used for monitoring or other management services for a device. They ignore all ordinary claims to the device with respect to access modes and any resource allocations.
- Allocation
Mode string AllocationMode and its related fields define how devices are allocated to satisfy this request. Supported values are:
ExactCount: This request is for a specific number of devices. This is the default. The exact number is provided in the count field.
All: This request is for all of the matching devices in a pool. Allocation will fail if some devices are already allocated, unless adminAccess is requested.
If AlloctionMode is not specified, the default mode is ExactCount. If the mode is ExactCount and count is not specified, the default count is one. Any other requests must specify this field.
More modes may get added in the future. Clients must refuse to handle requests with unknown modes.
- Count int
- Count is used only when the count mode is "ExactCount". Must be greater than zero. If AllocationMode is ExactCount and this field is not specified, the default is one.
- Selectors
[]Device
Selector - Selectors define criteria which must be satisfied by a specific device in order for that device to be considered for this request. All selectors must be satisfied for a device to be considered.
- device
Class StringName DeviceClassName references a specific DeviceClass, which can define additional configuration and selectors to be inherited by this request.
A class is required. Which classes are available depends on the cluster.
Administrators may use this to restrict which devices may get requested by only installing classes with selectors for permitted devices. If users are free to request anything without restrictions, then administrators can create an empty DeviceClass for users to reference.
- name String
Name can be used to reference this request in a pod.spec.containers[].resources.claims entry and in a constraint of the claim.
Must be a DNS label.
- admin
Access Boolean - AdminAccess indicates that this is a claim for administrative access to the device(s). Claims with AdminAccess are expected to be used for monitoring or other management services for a device. They ignore all ordinary claims to the device with respect to access modes and any resource allocations.
- allocation
Mode String AllocationMode and its related fields define how devices are allocated to satisfy this request. Supported values are:
ExactCount: This request is for a specific number of devices. This is the default. The exact number is provided in the count field.
All: This request is for all of the matching devices in a pool. Allocation will fail if some devices are already allocated, unless adminAccess is requested.
If AlloctionMode is not specified, the default mode is ExactCount. If the mode is ExactCount and count is not specified, the default count is one. Any other requests must specify this field.
More modes may get added in the future. Clients must refuse to handle requests with unknown modes.
- count Integer
- Count is used only when the count mode is "ExactCount". Must be greater than zero. If AllocationMode is ExactCount and this field is not specified, the default is one.
- selectors
List<Device
Selector> - Selectors define criteria which must be satisfied by a specific device in order for that device to be considered for this request. All selectors must be satisfied for a device to be considered.
- device
Class stringName DeviceClassName references a specific DeviceClass, which can define additional configuration and selectors to be inherited by this request.
A class is required. Which classes are available depends on the cluster.
Administrators may use this to restrict which devices may get requested by only installing classes with selectors for permitted devices. If users are free to request anything without restrictions, then administrators can create an empty DeviceClass for users to reference.
- name string
Name can be used to reference this request in a pod.spec.containers[].resources.claims entry and in a constraint of the claim.
Must be a DNS label.
- admin
Access boolean - AdminAccess indicates that this is a claim for administrative access to the device(s). Claims with AdminAccess are expected to be used for monitoring or other management services for a device. They ignore all ordinary claims to the device with respect to access modes and any resource allocations.
- allocation
Mode string AllocationMode and its related fields define how devices are allocated to satisfy this request. Supported values are:
ExactCount: This request is for a specific number of devices. This is the default. The exact number is provided in the count field.
All: This request is for all of the matching devices in a pool. Allocation will fail if some devices are already allocated, unless adminAccess is requested.
If AlloctionMode is not specified, the default mode is ExactCount. If the mode is ExactCount and count is not specified, the default count is one. Any other requests must specify this field.
More modes may get added in the future. Clients must refuse to handle requests with unknown modes.
- count number
- Count is used only when the count mode is "ExactCount". Must be greater than zero. If AllocationMode is ExactCount and this field is not specified, the default is one.
- selectors
Device
Selector[] - Selectors define criteria which must be satisfied by a specific device in order for that device to be considered for this request. All selectors must be satisfied for a device to be considered.
- device_
class_ strname DeviceClassName references a specific DeviceClass, which can define additional configuration and selectors to be inherited by this request.
A class is required. Which classes are available depends on the cluster.
Administrators may use this to restrict which devices may get requested by only installing classes with selectors for permitted devices. If users are free to request anything without restrictions, then administrators can create an empty DeviceClass for users to reference.
- name str
Name can be used to reference this request in a pod.spec.containers[].resources.claims entry and in a constraint of the claim.
Must be a DNS label.
- admin_
access bool - AdminAccess indicates that this is a claim for administrative access to the device(s). Claims with AdminAccess are expected to be used for monitoring or other management services for a device. They ignore all ordinary claims to the device with respect to access modes and any resource allocations.
- allocation_
mode str AllocationMode and its related fields define how devices are allocated to satisfy this request. Supported values are:
ExactCount: This request is for a specific number of devices. This is the default. The exact number is provided in the count field.
All: This request is for all of the matching devices in a pool. Allocation will fail if some devices are already allocated, unless adminAccess is requested.
If AlloctionMode is not specified, the default mode is ExactCount. If the mode is ExactCount and count is not specified, the default count is one. Any other requests must specify this field.
More modes may get added in the future. Clients must refuse to handle requests with unknown modes.
- count int
- Count is used only when the count mode is "ExactCount". Must be greater than zero. If AllocationMode is ExactCount and this field is not specified, the default is one.
- selectors
Sequence[resource_
k8s_ io.v1alpha3. Device Selector] - Selectors define criteria which must be satisfied by a specific device in order for that device to be considered for this request. All selectors must be satisfied for a device to be considered.
- device
Class StringName DeviceClassName references a specific DeviceClass, which can define additional configuration and selectors to be inherited by this request.
A class is required. Which classes are available depends on the cluster.
Administrators may use this to restrict which devices may get requested by only installing classes with selectors for permitted devices. If users are free to request anything without restrictions, then administrators can create an empty DeviceClass for users to reference.
- name String
Name can be used to reference this request in a pod.spec.containers[].resources.claims entry and in a constraint of the claim.
Must be a DNS label.
- admin
Access Boolean - AdminAccess indicates that this is a claim for administrative access to the device(s). Claims with AdminAccess are expected to be used for monitoring or other management services for a device. They ignore all ordinary claims to the device with respect to access modes and any resource allocations.
- allocation
Mode String AllocationMode and its related fields define how devices are allocated to satisfy this request. Supported values are:
ExactCount: This request is for a specific number of devices. This is the default. The exact number is provided in the count field.
All: This request is for all of the matching devices in a pool. Allocation will fail if some devices are already allocated, unless adminAccess is requested.
If AlloctionMode is not specified, the default mode is ExactCount. If the mode is ExactCount and count is not specified, the default count is one. Any other requests must specify this field.
More modes may get added in the future. Clients must refuse to handle requests with unknown modes.
- count Number
- Count is used only when the count mode is "ExactCount". Must be greater than zero. If AllocationMode is ExactCount and this field is not specified, the default is one.
- selectors List<Property Map>
- Selectors define criteria which must be satisfied by a specific device in order for that device to be considered for this request. All selectors must be satisfied for a device to be considered.
DeviceSelector, DeviceSelectorArgs
- Cel
CELDevice
Selector - CEL contains a CEL expression for selecting a device.
- Cel
CELDevice
Selector - CEL contains a CEL expression for selecting a device.
- cel
CELDevice
Selector - CEL contains a CEL expression for selecting a device.
- cel
CELDevice
Selector - CEL contains a CEL expression for selecting a device.
- cel
resource_
k8s_ io.v1alpha3. CELDevice Selector - CEL contains a CEL expression for selecting a device.
- cel Property Map
- CEL contains a CEL expression for selecting a device.
ManagedFieldsEntry, ManagedFieldsEntryArgs
- Api
Version string - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- Fields
Type string - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- Fields
V1 System.Text. Json. Json Element - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- Manager string
- Manager is an identifier of the workflow managing these fields.
- Operation string
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- Subresource string
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- Time string
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- Api
Version string - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- Fields
Type string - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- Fields
V1 interface{} - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- Manager string
- Manager is an identifier of the workflow managing these fields.
- Operation string
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- Subresource string
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- Time string
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api
Version String - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields
Type String - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields
V1 JsonElement - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager String
- Manager is an identifier of the workflow managing these fields.
- operation String
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource String
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time String
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api
Version string - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields
Type string - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields
V1 any - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager string
- Manager is an identifier of the workflow managing these fields.
- operation string
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource string
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time string
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api_
version str - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields_
type str - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields_
v1 Any - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager str
- Manager is an identifier of the workflow managing these fields.
- operation str
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource str
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time str
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
- api
Version String - APIVersion defines the version of this resource that this field set applies to. The format is "group/version" just like the top-level APIVersion field. It is necessary to track the version of a field set because it cannot be automatically converted.
- fields
Type String - FieldsType is the discriminator for the different fields format and version. There is currently only one possible value: "FieldsV1"
- fields
V1 JSON - FieldsV1 holds the first JSON version format as described in the "FieldsV1" type.
- manager String
- Manager is an identifier of the workflow managing these fields.
- operation String
- Operation is the type of operation which lead to this ManagedFieldsEntry being created. The only valid values for this field are 'Apply' and 'Update'.
- subresource String
- Subresource is the name of the subresource used to update that object, or empty string if the object was updated through the main resource. The value of this field is used to distinguish between managers, even if they share the same name. For example, a status update will be distinct from a regular update using the same manager name. Note that the APIVersion field is not related to the Subresource field and it always corresponds to the version of the main resource.
- time String
- Time is the timestamp of when the ManagedFields entry was added. The timestamp will also be updated if a field is added, the manager changes any of the owned fields value or removes a field. The timestamp does not update when a field is removed from the entry because another manager took it over.
ObjectMeta, ObjectMetaArgs
- Annotations Dictionary<string, string>
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- Cluster
Name string - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- Creation
Timestamp string CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Deletion
Grace intPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- Deletion
Timestamp string DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Finalizers List<string>
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- Generate
Name string GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- Generation int
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- Labels Dictionary<string, string>
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- Managed
Fields List<Pulumi.Kubernetes. Meta. V1. Inputs. Managed Fields Entry> - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- Name string
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Namespace string
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- Owner
References List<Pulumi.Kubernetes. Meta. V1. Inputs. Owner Reference> - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- Resource
Version string An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- Self
Link string - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- Uid string
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- Annotations map[string]string
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- Cluster
Name string - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- Creation
Timestamp string CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Deletion
Grace intPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- Deletion
Timestamp string DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- Finalizers []string
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- Generate
Name string GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- Generation int
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- Labels map[string]string
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- Managed
Fields ManagedFields Entry - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- Name string
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Namespace string
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- Owner
References OwnerReference - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- Resource
Version string An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- Self
Link string - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- Uid string
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations Map<String,String>
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster
Name String - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation
Timestamp String CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion
Grace IntegerPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion
Timestamp String DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers List<String>
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate
Name String GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation Integer
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels Map<String,String>
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed
Fields List<ManagedFields Entry> - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name String
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace String
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner
References List<OwnerReference> - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource
Version String An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self
Link String - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid String
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations {[key: string]: string}
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster
Name string - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation
Timestamp string CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion
Grace numberPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion
Timestamp string DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers string[]
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate
Name string GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation number
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels {[key: string]: string}
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed
Fields meta.v1.Managed Fields Entry[] - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name string
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace string
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner
References meta.v1.Owner Reference[] - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource
Version string An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self
Link string - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid string
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations Mapping[str, str]
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster_
name str - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation_
timestamp str CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion_
grace_ intperiod_ seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion_
timestamp str DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers Sequence[str]
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate_
name str GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation int
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels Mapping[str, str]
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed_
fields Sequence[meta.v1.Managed Fields Entry] - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name str
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace str
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner_
references Sequence[meta.v1.Owner Reference] - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource_
version str An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self_
link str - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid str
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- annotations Map<String>
- Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations
- cluster
Name String - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request.
- creation
Timestamp String CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC.
Populated by the system. Read-only. Null for lists. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- deletion
Grace NumberPeriod Seconds - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only.
- deletion
Timestamp String DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field, once the finalizers list is empty. As long as the finalizers list contains items, deletion is blocked. Once the deletionTimestamp is set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested.
Populated by the system when a graceful deletion is requested. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
- finalizers List<String>
- Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. Finalizers may be processed and removed in any order. Order is NOT enforced because it introduces significant risk of stuck finalizers. finalizers is a shared field, any actor with permission can reorder it. If the finalizer list is processed in order, then this can lead to a situation in which the component responsible for the first finalizer in the list is waiting for a signal (field value, external system, or other) produced by a component responsible for a finalizer later in the list, resulting in a deadlock. Without enforced ordering finalizers are free to order amongst themselves and are not vulnerable to ordering changes in the list.
- generate
Name String GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server.
If this field is specified and the generated name exists, the server will return a 409.
Applied only if Name is not specified. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#idempotency
- generation Number
- A sequence number representing a specific generation of the desired state. Populated by the system. Read-only.
- labels Map<String>
- Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
- managed
Fields List<Property Map> - ManagedFields maps workflow-id and version to the set of fields that are managed by that workflow. This is mostly for internal housekeeping, and users typically shouldn't need to set or understand this field. A workflow can be the user's name, a controller's name, or the name of a specific apply path like "ci-cd". The set of fields is always in the version that the workflow used when modifying the object.
- name String
- Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- namespace String
Namespace defines the space within which each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty.
Must be a DNS_LABEL. Cannot be updated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
- owner
References List<Property Map> - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller.
- resource
Version String An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources.
Populated by the system. Read-only. Value must be treated as opaque by clients and . More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#concurrency-control-and-consistency
- self
Link String - Deprecated: selfLink is a legacy read-only field that is no longer populated by the system.
- uid String
UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations.
Populated by the system. Read-only. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
OpaqueDeviceConfiguration, OpaqueDeviceConfigurationArgs
- Driver string
Driver is used to determine which kubelet plugin needs to be passed these configuration parameters.
An admission policy provided by the driver developer could use this to decide whether it needs to validate them.
Must be a DNS subdomain and should end with a DNS domain owned by the vendor of the driver.
- Parameters
System.
Text. Json. Json Element - Parameters can contain arbitrary data. It is the responsibility of the driver developer to handle validation and versioning. Typically this includes self-identification and a version ("kind" + "apiVersion" for Kubernetes types), with conversion between different versions.
- Driver string
Driver is used to determine which kubelet plugin needs to be passed these configuration parameters.
An admission policy provided by the driver developer could use this to decide whether it needs to validate them.
Must be a DNS subdomain and should end with a DNS domain owned by the vendor of the driver.
- Parameters interface{}
- Parameters can contain arbitrary data. It is the responsibility of the driver developer to handle validation and versioning. Typically this includes self-identification and a version ("kind" + "apiVersion" for Kubernetes types), with conversion between different versions.
- driver String
Driver is used to determine which kubelet plugin needs to be passed these configuration parameters.
An admission policy provided by the driver developer could use this to decide whether it needs to validate them.
Must be a DNS subdomain and should end with a DNS domain owned by the vendor of the driver.
- parameters
Json
Element - Parameters can contain arbitrary data. It is the responsibility of the driver developer to handle validation and versioning. Typically this includes self-identification and a version ("kind" + "apiVersion" for Kubernetes types), with conversion between different versions.
- driver string
Driver is used to determine which kubelet plugin needs to be passed these configuration parameters.
An admission policy provided by the driver developer could use this to decide whether it needs to validate them.
Must be a DNS subdomain and should end with a DNS domain owned by the vendor of the driver.
- parameters any
- Parameters can contain arbitrary data. It is the responsibility of the driver developer to handle validation and versioning. Typically this includes self-identification and a version ("kind" + "apiVersion" for Kubernetes types), with conversion between different versions.
- driver str
Driver is used to determine which kubelet plugin needs to be passed these configuration parameters.
An admission policy provided by the driver developer could use this to decide whether it needs to validate them.
Must be a DNS subdomain and should end with a DNS domain owned by the vendor of the driver.
- parameters Any
- Parameters can contain arbitrary data. It is the responsibility of the driver developer to handle validation and versioning. Typically this includes self-identification and a version ("kind" + "apiVersion" for Kubernetes types), with conversion between different versions.
- driver String
Driver is used to determine which kubelet plugin needs to be passed these configuration parameters.
An admission policy provided by the driver developer could use this to decide whether it needs to validate them.
Must be a DNS subdomain and should end with a DNS domain owned by the vendor of the driver.
- parameters JSON
- Parameters can contain arbitrary data. It is the responsibility of the driver developer to handle validation and versioning. Typically this includes self-identification and a version ("kind" + "apiVersion" for Kubernetes types), with conversion between different versions.
OwnerReference, OwnerReferenceArgs
- Api
Version string - API version of the referent.
- Kind string
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- Name string
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Uid string
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- Block
Owner boolDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- Controller bool
- If true, this reference points to the managing controller.
- Api
Version string - API version of the referent.
- Kind string
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- Name string
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- Uid string
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- Block
Owner boolDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- Controller bool
- If true, this reference points to the managing controller.
- api
Version String - API version of the referent.
- kind String
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name String
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid String
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- block
Owner BooleanDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller Boolean
- If true, this reference points to the managing controller.
- api
Version string - API version of the referent.
- kind string
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name string
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid string
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- block
Owner booleanDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller boolean
- If true, this reference points to the managing controller.
- api_
version str - API version of the referent.
- kind str
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name str
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid str
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- block_
owner_ booldeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller bool
- If true, this reference points to the managing controller.
- api
Version String - API version of the referent.
- kind String
- Kind of the referent. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
- name String
- Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#names
- uid String
- UID of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names#uids
- block
Owner BooleanDeletion - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. See https://kubernetes.io/docs/concepts/architecture/garbage-collection/#foreground-deletion for how the garbage collector interacts with this field and enforces the foreground deletion. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned.
- controller Boolean
- If true, this reference points to the managing controller.
ResourceClaimSpec, ResourceClaimSpecArgs
- Controller string
Controller is the name of the DRA driver that is meant to handle allocation of this claim. If empty, allocation is handled by the scheduler while scheduling a pod.
Must be a DNS subdomain and should end with a DNS domain owned by the vendor of the driver.
This is an alpha field and requires enabling the DRAControlPlaneController feature gate.
- Devices
Device
Claim - Devices defines how to request devices.
- Controller string
Controller is the name of the DRA driver that is meant to handle allocation of this claim. If empty, allocation is handled by the scheduler while scheduling a pod.
Must be a DNS subdomain and should end with a DNS domain owned by the vendor of the driver.
This is an alpha field and requires enabling the DRAControlPlaneController feature gate.
- Devices
Device
Claim - Devices defines how to request devices.
- controller String
Controller is the name of the DRA driver that is meant to handle allocation of this claim. If empty, allocation is handled by the scheduler while scheduling a pod.
Must be a DNS subdomain and should end with a DNS domain owned by the vendor of the driver.
This is an alpha field and requires enabling the DRAControlPlaneController feature gate.
- devices
Device
Claim - Devices defines how to request devices.
- controller string
Controller is the name of the DRA driver that is meant to handle allocation of this claim. If empty, allocation is handled by the scheduler while scheduling a pod.
Must be a DNS subdomain and should end with a DNS domain owned by the vendor of the driver.
This is an alpha field and requires enabling the DRAControlPlaneController feature gate.
- devices
Device
Claim - Devices defines how to request devices.
- controller str
Controller is the name of the DRA driver that is meant to handle allocation of this claim. If empty, allocation is handled by the scheduler while scheduling a pod.
Must be a DNS subdomain and should end with a DNS domain owned by the vendor of the driver.
This is an alpha field and requires enabling the DRAControlPlaneController feature gate.
- devices
resource_
k8s_ io.v1alpha3. Device Claim - Devices defines how to request devices.
- controller String
Controller is the name of the DRA driver that is meant to handle allocation of this claim. If empty, allocation is handled by the scheduler while scheduling a pod.
Must be a DNS subdomain and should end with a DNS domain owned by the vendor of the driver.
This is an alpha field and requires enabling the DRAControlPlaneController feature gate.
- devices Property Map
- Devices defines how to request devices.
ResourceClaimTemplateSpec, ResourceClaimTemplateSpecArgs
- Spec
Resource
Claim Spec - Spec for the ResourceClaim. The entire content is copied unchanged into the ResourceClaim that gets created from this template. The same fields as in a ResourceClaim are also valid here.
- Metadata
Pulumi.
Kubernetes. Meta. V1. Inputs. Object Meta - ObjectMeta may contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- Spec
Resource
Claim Spec - Spec for the ResourceClaim. The entire content is copied unchanged into the ResourceClaim that gets created from this template. The same fields as in a ResourceClaim are also valid here.
- Metadata
Object
Meta - ObjectMeta may contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- spec
Resource
Claim Spec - Spec for the ResourceClaim. The entire content is copied unchanged into the ResourceClaim that gets created from this template. The same fields as in a ResourceClaim are also valid here.
- metadata
Object
Meta - ObjectMeta may contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- spec
Resource
Claim Spec - Spec for the ResourceClaim. The entire content is copied unchanged into the ResourceClaim that gets created from this template. The same fields as in a ResourceClaim are also valid here.
- metadata
meta.v1.
Object Meta - ObjectMeta may contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- spec
resource_
k8s_ io.v1alpha3. Resource Claim Spec - Spec for the ResourceClaim. The entire content is copied unchanged into the ResourceClaim that gets created from this template. The same fields as in a ResourceClaim are also valid here.
- metadata
meta.v1.
Object Meta - ObjectMeta may contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
- spec Property Map
- Spec for the ResourceClaim. The entire content is copied unchanged into the ResourceClaim that gets created from this template. The same fields as in a ResourceClaim are also valid here.
- metadata Property Map
- ObjectMeta may contain labels and annotations that will be copied into the PVC when creating it. No other fields are allowed and will be rejected during validation.
Package Details
- Repository
- Kubernetes pulumi/pulumi-kubernetes
- License
- Apache-2.0