Oracle Cloud Infrastructure v2.11.0 published on Thursday, Sep 19, 2024 by Pulumi
oci.AiDocument.getModel
Explore with Pulumi AI
This data source provides details about a specific Model resource in Oracle Cloud Infrastructure Ai Document service.
Get a model by identifier.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = oci.AiDocument.getModel({
modelId: testModelOciAiDocumentModel.id,
});
import pulumi
import pulumi_oci as oci
test_model = oci.AiDocument.get_model(model_id=test_model_oci_ai_document_model["id"])
package main
import (
"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/AiDocument"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := AiDocument.GetModel(ctx, &aidocument.GetModelArgs{
ModelId: testModelOciAiDocumentModel.Id,
}, nil)
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() =>
{
var testModel = Oci.AiDocument.GetModel.Invoke(new()
{
ModelId = testModelOciAiDocumentModel.Id,
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiDocument.AiDocumentFunctions;
import com.pulumi.oci.AiDocument.inputs.GetModelArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var testModel = AiDocumentFunctions.getModel(GetModelArgs.builder()
.modelId(testModelOciAiDocumentModel.id())
.build());
}
}
variables:
testModel:
fn::invoke:
Function: oci:AiDocument:getModel
Arguments:
modelId: ${testModelOciAiDocumentModel.id}
Using getModel
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getModel(args: GetModelArgs, opts?: InvokeOptions): Promise<GetModelResult>
function getModelOutput(args: GetModelOutputArgs, opts?: InvokeOptions): Output<GetModelResult>
def get_model(model_id: Optional[str] = None,
opts: Optional[InvokeOptions] = None) -> GetModelResult
def get_model_output(model_id: Optional[pulumi.Input[str]] = None,
opts: Optional[InvokeOptions] = None) -> Output[GetModelResult]
func GetModel(ctx *Context, args *GetModelArgs, opts ...InvokeOption) (*GetModelResult, error)
func GetModelOutput(ctx *Context, args *GetModelOutputArgs, opts ...InvokeOption) GetModelResultOutput
> Note: This function is named GetModel
in the Go SDK.
public static class GetModel
{
public static Task<GetModelResult> InvokeAsync(GetModelArgs args, InvokeOptions? opts = null)
public static Output<GetModelResult> Invoke(GetModelInvokeArgs args, InvokeOptions? opts = null)
}
public static CompletableFuture<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
// Output-based functions aren't available in Java yet
fn::invoke:
function: oci:AiDocument/getModel:getModel
arguments:
# arguments dictionary
The following arguments are supported:
- Model
Id string - A unique model identifier.
- Model
Id string - A unique model identifier.
- model
Id String - A unique model identifier.
- model
Id string - A unique model identifier.
- model_
id str - A unique model identifier.
- model
Id String - A unique model identifier.
getModel Result
The following output properties are available:
- Compartment
Id string - The compartment identifier.
- Component
Models List<GetModel Component Model> - The OCID collection of active custom Key Value models that need to be composed.
- Dictionary<string, string>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- Description string
- An optional description of the model.
- Display
Name string - A human-friendly name for the model, which can be changed.
- Dictionary<string, string>
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- Id string
- A unique identifier that is immutable after creation.
- Is
Composed boolModel - Set to true when the model is created by using multiple key value extraction models.
- Is
Quick boolMode - Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- Labels List<string>
- The collection of labels used to train the custom model.
- Lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- Max
Training doubleTime In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- Metrics
List<Get
Model Metric> - Trained Model Metrics.
- Model
Id string - The OCID of active custom Key Value model that need to be composed.
- Model
Type string - The type of the Document model.
- Model
Version string - The version of the model.
- Project
Id string - The OCID of the project that contains the model.
- State string
- The current state of the model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- Tenancy
Id string - The tenancy id of the model.
- Testing
Datasets List<GetModel Testing Dataset> - The base entity which is the input for creating and training a model.
- Time
Created string - When the model was created, as an RFC3339 datetime string.
- Time
Updated string - When the model was updated, as an RFC3339 datetime string.
- Trained
Time doubleIn Hours - The total hours actually used for model training.
- Training
Datasets List<GetModel Training Dataset> - The base entity which is the input for creating and training a model.
- Validation
Datasets List<GetModel Validation Dataset> - The base entity which is the input for creating and training a model.
- Compartment
Id string - The compartment identifier.
- Component
Models []GetModel Component Model - The OCID collection of active custom Key Value models that need to be composed.
- map[string]string
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- Description string
- An optional description of the model.
- Display
Name string - A human-friendly name for the model, which can be changed.
- map[string]string
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- Id string
- A unique identifier that is immutable after creation.
- Is
Composed boolModel - Set to true when the model is created by using multiple key value extraction models.
- Is
Quick boolMode - Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- Labels []string
- The collection of labels used to train the custom model.
- Lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- Max
Training float64Time In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- Metrics
[]Get
Model Metric - Trained Model Metrics.
- Model
Id string - The OCID of active custom Key Value model that need to be composed.
- Model
Type string - The type of the Document model.
- Model
Version string - The version of the model.
- Project
Id string - The OCID of the project that contains the model.
- State string
- The current state of the model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- Tenancy
Id string - The tenancy id of the model.
- Testing
Datasets []GetModel Testing Dataset - The base entity which is the input for creating and training a model.
- Time
Created string - When the model was created, as an RFC3339 datetime string.
- Time
Updated string - When the model was updated, as an RFC3339 datetime string.
- Trained
Time float64In Hours - The total hours actually used for model training.
- Training
Datasets []GetModel Training Dataset - The base entity which is the input for creating and training a model.
- Validation
Datasets []GetModel Validation Dataset - The base entity which is the input for creating and training a model.
- compartment
Id String - The compartment identifier.
- component
Models List<GetModel Component Model> - The OCID collection of active custom Key Value models that need to be composed.
- Map<String,String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description String
- An optional description of the model.
- display
Name String - A human-friendly name for the model, which can be changed.
- Map<String,String>
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- id String
- A unique identifier that is immutable after creation.
- is
Composed BooleanModel - Set to true when the model is created by using multiple key value extraction models.
- is
Quick BooleanMode - Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycle
Details String - A message describing the current state in more detail, that can provide actionable information if training failed.
- max
Training DoubleTime In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- metrics
List<Get
Model Metric> - Trained Model Metrics.
- model
Id String - The OCID of active custom Key Value model that need to be composed.
- model
Type String - The type of the Document model.
- model
Version String - The version of the model.
- project
Id String - The OCID of the project that contains the model.
- state String
- The current state of the model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy
Id String - The tenancy id of the model.
- testing
Datasets List<GetModel Testing Dataset> - The base entity which is the input for creating and training a model.
- time
Created String - When the model was created, as an RFC3339 datetime string.
- time
Updated String - When the model was updated, as an RFC3339 datetime string.
- trained
Time DoubleIn Hours - The total hours actually used for model training.
- training
Datasets List<GetModel Training Dataset> - The base entity which is the input for creating and training a model.
- validation
Datasets List<GetModel Validation Dataset> - The base entity which is the input for creating and training a model.
- compartment
Id string - The compartment identifier.
- component
Models GetModel Component Model[] - The OCID collection of active custom Key Value models that need to be composed.
- {[key: string]: string}
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description string
- An optional description of the model.
- display
Name string - A human-friendly name for the model, which can be changed.
- {[key: string]: string}
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- id string
- A unique identifier that is immutable after creation.
- is
Composed booleanModel - Set to true when the model is created by using multiple key value extraction models.
- is
Quick booleanMode - Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- labels string[]
- The collection of labels used to train the custom model.
- lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- max
Training numberTime In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- metrics
Get
Model Metric[] - Trained Model Metrics.
- model
Id string - The OCID of active custom Key Value model that need to be composed.
- model
Type string - The type of the Document model.
- model
Version string - The version of the model.
- project
Id string - The OCID of the project that contains the model.
- state string
- The current state of the model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy
Id string - The tenancy id of the model.
- testing
Datasets GetModel Testing Dataset[] - The base entity which is the input for creating and training a model.
- time
Created string - When the model was created, as an RFC3339 datetime string.
- time
Updated string - When the model was updated, as an RFC3339 datetime string.
- trained
Time numberIn Hours - The total hours actually used for model training.
- training
Datasets GetModel Training Dataset[] - The base entity which is the input for creating and training a model.
- validation
Datasets GetModel Validation Dataset[] - The base entity which is the input for creating and training a model.
- compartment_
id str - The compartment identifier.
- component_
models Sequence[aidocument.Get Model Component Model] - The OCID collection of active custom Key Value models that need to be composed.
- Mapping[str, str]
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description str
- An optional description of the model.
- display_
name str - A human-friendly name for the model, which can be changed.
- Mapping[str, str]
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- id str
- A unique identifier that is immutable after creation.
- is_
composed_ boolmodel - Set to true when the model is created by using multiple key value extraction models.
- is_
quick_ boolmode - Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- labels Sequence[str]
- The collection of labels used to train the custom model.
- lifecycle_
details str - A message describing the current state in more detail, that can provide actionable information if training failed.
- max_
training_ floattime_ in_ hours - The maximum model training time in hours, expressed as a decimal fraction.
- metrics
Sequence[aidocument.
Get Model Metric] - Trained Model Metrics.
- model_
id str - The OCID of active custom Key Value model that need to be composed.
- model_
type str - The type of the Document model.
- model_
version str - The version of the model.
- project_
id str - The OCID of the project that contains the model.
- state str
- The current state of the model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy_
id str - The tenancy id of the model.
- testing_
datasets Sequence[aidocument.Get Model Testing Dataset] - The base entity which is the input for creating and training a model.
- time_
created str - When the model was created, as an RFC3339 datetime string.
- time_
updated str - When the model was updated, as an RFC3339 datetime string.
- trained_
time_ floatin_ hours - The total hours actually used for model training.
- training_
datasets Sequence[aidocument.Get Model Training Dataset] - The base entity which is the input for creating and training a model.
- validation_
datasets Sequence[aidocument.Get Model Validation Dataset] - The base entity which is the input for creating and training a model.
- compartment
Id String - The compartment identifier.
- component
Models List<Property Map> - The OCID collection of active custom Key Value models that need to be composed.
- Map<String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description String
- An optional description of the model.
- display
Name String - A human-friendly name for the model, which can be changed.
- Map<String>
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- id String
- A unique identifier that is immutable after creation.
- is
Composed BooleanModel - Set to true when the model is created by using multiple key value extraction models.
- is
Quick BooleanMode - Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycle
Details String - A message describing the current state in more detail, that can provide actionable information if training failed.
- max
Training NumberTime In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- metrics List<Property Map>
- Trained Model Metrics.
- model
Id String - The OCID of active custom Key Value model that need to be composed.
- model
Type String - The type of the Document model.
- model
Version String - The version of the model.
- project
Id String - The OCID of the project that contains the model.
- state String
- The current state of the model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy
Id String - The tenancy id of the model.
- testing
Datasets List<Property Map> - The base entity which is the input for creating and training a model.
- time
Created String - When the model was created, as an RFC3339 datetime string.
- time
Updated String - When the model was updated, as an RFC3339 datetime string.
- trained
Time NumberIn Hours - The total hours actually used for model training.
- training
Datasets List<Property Map> - The base entity which is the input for creating and training a model.
- validation
Datasets List<Property Map> - The base entity which is the input for creating and training a model.
Supporting Types
GetModelComponentModel
- Model
Id string - A unique model identifier.
- Model
Id string - A unique model identifier.
- model
Id String - A unique model identifier.
- model
Id string - A unique model identifier.
- model_
id str - A unique model identifier.
- model
Id String - A unique model identifier.
GetModelMetric
- Dataset
Summaries List<GetModel Metric Dataset Summary> - Summary of count of samples used during model training.
- Label
Metrics List<GetReports Model Metric Label Metrics Report> - List of metrics entries per label.
- Model
Type string - The type of the Document model.
- Overall
Metrics List<GetReports Model Metric Overall Metrics Report> - Overall Metrics report for Document Classification Model.
- Dataset
Summaries []GetModel Metric Dataset Summary - Summary of count of samples used during model training.
- Label
Metrics []GetReports Model Metric Label Metrics Report - List of metrics entries per label.
- Model
Type string - The type of the Document model.
- Overall
Metrics []GetReports Model Metric Overall Metrics Report - Overall Metrics report for Document Classification Model.
- dataset
Summaries List<GetModel Metric Dataset Summary> - Summary of count of samples used during model training.
- label
Metrics List<GetReports Model Metric Label Metrics Report> - List of metrics entries per label.
- model
Type String - The type of the Document model.
- overall
Metrics List<GetReports Model Metric Overall Metrics Report> - Overall Metrics report for Document Classification Model.
- dataset
Summaries GetModel Metric Dataset Summary[] - Summary of count of samples used during model training.
- label
Metrics GetReports Model Metric Label Metrics Report[] - List of metrics entries per label.
- model
Type string - The type of the Document model.
- overall
Metrics GetReports Model Metric Overall Metrics Report[] - Overall Metrics report for Document Classification Model.
- dataset_
summaries Sequence[aidocument.Get Model Metric Dataset Summary] - Summary of count of samples used during model training.
- label_
metrics_ Sequence[aidocument.reports Get Model Metric Label Metrics Report] - List of metrics entries per label.
- model_
type str - The type of the Document model.
- overall_
metrics_ Sequence[aidocument.reports Get Model Metric Overall Metrics Report] - Overall Metrics report for Document Classification Model.
- dataset
Summaries List<Property Map> - Summary of count of samples used during model training.
- label
Metrics List<Property Map>Reports - List of metrics entries per label.
- model
Type String - The type of the Document model.
- overall
Metrics List<Property Map>Reports - Overall Metrics report for Document Classification Model.
GetModelMetricDatasetSummary
- Test
Sample intCount - Number of samples used for testing the model.
- Training
Sample intCount - Number of samples used for training the model.
- Validation
Sample intCount - Number of samples used for validating the model.
- Test
Sample intCount - Number of samples used for testing the model.
- Training
Sample intCount - Number of samples used for training the model.
- Validation
Sample intCount - Number of samples used for validating the model.
- test
Sample IntegerCount - Number of samples used for testing the model.
- training
Sample IntegerCount - Number of samples used for training the model.
- validation
Sample IntegerCount - Number of samples used for validating the model.
- test
Sample numberCount - Number of samples used for testing the model.
- training
Sample numberCount - Number of samples used for training the model.
- validation
Sample numberCount - Number of samples used for validating the model.
- test_
sample_ intcount - Number of samples used for testing the model.
- training_
sample_ intcount - Number of samples used for training the model.
- validation_
sample_ intcount - Number of samples used for validating the model.
- test
Sample NumberCount - Number of samples used for testing the model.
- training
Sample NumberCount - Number of samples used for training the model.
- validation
Sample NumberCount - Number of samples used for validating the model.
GetModelMetricLabelMetricsReport
- Confidence
Entries List<GetModel Metric Label Metrics Report Confidence Entry> - List of document classification confidence report.
- Document
Count int - Total test documents in the label.
- Label string
- Label name
- double
- Mean average precision under different thresholds
- Confidence
Entries []GetModel Metric Label Metrics Report Confidence Entry - List of document classification confidence report.
- Document
Count int - Total test documents in the label.
- Label string
- Label name
- float64
- Mean average precision under different thresholds
- confidence
Entries List<GetModel Metric Label Metrics Report Confidence Entry> - List of document classification confidence report.
- document
Count Integer - Total test documents in the label.
- label String
- Label name
- Double
- Mean average precision under different thresholds
- confidence
Entries GetModel Metric Label Metrics Report Confidence Entry[] - List of document classification confidence report.
- document
Count number - Total test documents in the label.
- label string
- Label name
- number
- Mean average precision under different thresholds
- confidence_
entries Sequence[aidocument.Get Model Metric Label Metrics Report Confidence Entry] - List of document classification confidence report.
- document_
count int - Total test documents in the label.
- label str
- Label name
- mean_
average_ floatprecision - Mean average precision under different thresholds
- confidence
Entries List<Property Map> - List of document classification confidence report.
- document
Count Number - Total test documents in the label.
- label String
- Label name
- Number
- Mean average precision under different thresholds
GetModelMetricLabelMetricsReportConfidenceEntry
GetModelMetricOverallMetricsReport
- Confidence
Entries List<GetModel Metric Overall Metrics Report Confidence Entry> - List of document classification confidence report.
- Document
Count int - Total test documents in the label.
- double
- Mean average precision under different thresholds
- Confidence
Entries []GetModel Metric Overall Metrics Report Confidence Entry - List of document classification confidence report.
- Document
Count int - Total test documents in the label.
- float64
- Mean average precision under different thresholds
- confidence
Entries List<GetModel Metric Overall Metrics Report Confidence Entry> - List of document classification confidence report.
- document
Count Integer - Total test documents in the label.
- Double
- Mean average precision under different thresholds
- confidence
Entries GetModel Metric Overall Metrics Report Confidence Entry[] - List of document classification confidence report.
- document
Count number - Total test documents in the label.
- number
- Mean average precision under different thresholds
- confidence_
entries Sequence[aidocument.Get Model Metric Overall Metrics Report Confidence Entry] - List of document classification confidence report.
- document_
count int - Total test documents in the label.
- mean_
average_ floatprecision - Mean average precision under different thresholds
- confidence
Entries List<Property Map> - List of document classification confidence report.
- document
Count Number - Total test documents in the label.
- Number
- Mean average precision under different thresholds
GetModelMetricOverallMetricsReportConfidenceEntry
GetModelTestingDataset
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Dataset
Type string - The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Dataset
Type string - The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- dataset
Type String - The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id string - OCID of the Data Labeling dataset.
- dataset
Type string - The dataset type, based on where it is stored.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_
id str - OCID of the Data Labeling dataset.
- dataset_
type str - The dataset type, based on where it is stored.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- dataset
Type String - The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
GetModelTrainingDataset
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Dataset
Type string - The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Dataset
Type string - The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- dataset
Type String - The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id string - OCID of the Data Labeling dataset.
- dataset
Type string - The dataset type, based on where it is stored.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_
id str - OCID of the Data Labeling dataset.
- dataset_
type str - The dataset type, based on where it is stored.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- dataset
Type String - The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
GetModelValidationDataset
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Dataset
Type string - The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Dataset
Type string - The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- dataset
Type String - The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id string - OCID of the Data Labeling dataset.
- dataset
Type string - The dataset type, based on where it is stored.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_
id str - OCID of the Data Labeling dataset.
- dataset_
type str - The dataset type, based on where it is stored.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- dataset
Type String - The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
oci
Terraform Provider.