oci.AiDocument.Model
Explore with Pulumi AI
This resource provides the Model resource in Oracle Cloud Infrastructure Ai Document service.
Create a new model.
Updates the model metadata only selected path parameter.
Create Model Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new Model(name: string, args: ModelArgs, opts?: CustomResourceOptions);
@overload
def Model(resource_name: str,
args: ModelArgs,
opts: Optional[ResourceOptions] = None)
@overload
def Model(resource_name: str,
opts: Optional[ResourceOptions] = None,
compartment_id: Optional[str] = None,
project_id: Optional[str] = None,
model_type: Optional[str] = None,
description: Optional[str] = None,
display_name: Optional[str] = None,
freeform_tags: Optional[Mapping[str, str]] = None,
is_quick_mode: Optional[bool] = None,
max_training_time_in_hours: Optional[float] = None,
model_id: Optional[str] = None,
defined_tags: Optional[Mapping[str, str]] = None,
model_version: Optional[str] = None,
component_models: Optional[Sequence[_aidocument.ModelComponentModelArgs]] = None,
testing_dataset: Optional[_aidocument.ModelTestingDatasetArgs] = None,
training_dataset: Optional[_aidocument.ModelTrainingDatasetArgs] = None,
validation_dataset: Optional[_aidocument.ModelValidationDatasetArgs] = None)
func NewModel(ctx *Context, name string, args ModelArgs, opts ...ResourceOption) (*Model, error)
public Model(string name, ModelArgs args, CustomResourceOptions? opts = null)
type: oci:AiDocument:Model
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var ociModelResource = new Oci.AiDocument.Model("ociModelResource", new()
{
CompartmentId = "string",
ProjectId = "string",
ModelType = "string",
Description = "string",
DisplayName = "string",
FreeformTags =
{
{ "string", "string" },
},
IsQuickMode = false,
MaxTrainingTimeInHours = 0,
ModelId = "string",
DefinedTags =
{
{ "string", "string" },
},
ModelVersion = "string",
ComponentModels = new[]
{
new Oci.AiDocument.Inputs.ModelComponentModelArgs
{
ModelId = "string",
},
},
TestingDataset = new Oci.AiDocument.Inputs.ModelTestingDatasetArgs
{
DatasetType = "string",
Bucket = "string",
DatasetId = "string",
Namespace = "string",
Object = "string",
},
TrainingDataset = new Oci.AiDocument.Inputs.ModelTrainingDatasetArgs
{
DatasetType = "string",
Bucket = "string",
DatasetId = "string",
Namespace = "string",
Object = "string",
},
ValidationDataset = new Oci.AiDocument.Inputs.ModelValidationDatasetArgs
{
DatasetType = "string",
Bucket = "string",
DatasetId = "string",
Namespace = "string",
Object = "string",
},
});
example, err := AiDocument.NewModel(ctx, "ociModelResource", &AiDocument.ModelArgs{
CompartmentId: pulumi.String("string"),
ProjectId: pulumi.String("string"),
ModelType: pulumi.String("string"),
Description: pulumi.String("string"),
DisplayName: pulumi.String("string"),
FreeformTags: pulumi.StringMap{
"string": pulumi.String("string"),
},
IsQuickMode: pulumi.Bool(false),
MaxTrainingTimeInHours: pulumi.Float64(0),
ModelId: pulumi.String("string"),
DefinedTags: pulumi.StringMap{
"string": pulumi.String("string"),
},
ModelVersion: pulumi.String("string"),
ComponentModels: aidocument.ModelComponentModelArray{
&aidocument.ModelComponentModelArgs{
ModelId: pulumi.String("string"),
},
},
TestingDataset: &aidocument.ModelTestingDatasetArgs{
DatasetType: pulumi.String("string"),
Bucket: pulumi.String("string"),
DatasetId: pulumi.String("string"),
Namespace: pulumi.String("string"),
Object: pulumi.String("string"),
},
TrainingDataset: &aidocument.ModelTrainingDatasetArgs{
DatasetType: pulumi.String("string"),
Bucket: pulumi.String("string"),
DatasetId: pulumi.String("string"),
Namespace: pulumi.String("string"),
Object: pulumi.String("string"),
},
ValidationDataset: &aidocument.ModelValidationDatasetArgs{
DatasetType: pulumi.String("string"),
Bucket: pulumi.String("string"),
DatasetId: pulumi.String("string"),
Namespace: pulumi.String("string"),
Object: pulumi.String("string"),
},
})
var ociModelResource = new Model("ociModelResource", ModelArgs.builder()
.compartmentId("string")
.projectId("string")
.modelType("string")
.description("string")
.displayName("string")
.freeformTags(Map.of("string", "string"))
.isQuickMode(false)
.maxTrainingTimeInHours(0)
.modelId("string")
.definedTags(Map.of("string", "string"))
.modelVersion("string")
.componentModels(ModelComponentModelArgs.builder()
.modelId("string")
.build())
.testingDataset(ModelTestingDatasetArgs.builder()
.datasetType("string")
.bucket("string")
.datasetId("string")
.namespace("string")
.object("string")
.build())
.trainingDataset(ModelTrainingDatasetArgs.builder()
.datasetType("string")
.bucket("string")
.datasetId("string")
.namespace("string")
.object("string")
.build())
.validationDataset(ModelValidationDatasetArgs.builder()
.datasetType("string")
.bucket("string")
.datasetId("string")
.namespace("string")
.object("string")
.build())
.build());
oci_model_resource = oci.ai_document.Model("ociModelResource",
compartment_id="string",
project_id="string",
model_type="string",
description="string",
display_name="string",
freeform_tags={
"string": "string",
},
is_quick_mode=False,
max_training_time_in_hours=0,
model_id="string",
defined_tags={
"string": "string",
},
model_version="string",
component_models=[oci.ai_document.ModelComponentModelArgs(
model_id="string",
)],
testing_dataset=oci.ai_document.ModelTestingDatasetArgs(
dataset_type="string",
bucket="string",
dataset_id="string",
namespace="string",
object="string",
),
training_dataset=oci.ai_document.ModelTrainingDatasetArgs(
dataset_type="string",
bucket="string",
dataset_id="string",
namespace="string",
object="string",
),
validation_dataset=oci.ai_document.ModelValidationDatasetArgs(
dataset_type="string",
bucket="string",
dataset_id="string",
namespace="string",
object="string",
))
const ociModelResource = new oci.aidocument.Model("ociModelResource", {
compartmentId: "string",
projectId: "string",
modelType: "string",
description: "string",
displayName: "string",
freeformTags: {
string: "string",
},
isQuickMode: false,
maxTrainingTimeInHours: 0,
modelId: "string",
definedTags: {
string: "string",
},
modelVersion: "string",
componentModels: [{
modelId: "string",
}],
testingDataset: {
datasetType: "string",
bucket: "string",
datasetId: "string",
namespace: "string",
object: "string",
},
trainingDataset: {
datasetType: "string",
bucket: "string",
datasetId: "string",
namespace: "string",
object: "string",
},
validationDataset: {
datasetType: "string",
bucket: "string",
datasetId: "string",
namespace: "string",
object: "string",
},
});
type: oci:AiDocument:Model
properties:
compartmentId: string
componentModels:
- modelId: string
definedTags:
string: string
description: string
displayName: string
freeformTags:
string: string
isQuickMode: false
maxTrainingTimeInHours: 0
modelId: string
modelType: string
modelVersion: string
projectId: string
testingDataset:
bucket: string
datasetId: string
datasetType: string
namespace: string
object: string
trainingDataset:
bucket: string
datasetId: string
datasetType: string
namespace: string
object: string
validationDataset:
bucket: string
datasetId: string
datasetType: string
namespace: string
object: string
Model Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
The Model resource accepts the following input properties:
- Compartment
Id string - (Updatable) The compartment identifier.
- Model
Type string - The type of the Document model.
- Project
Id string - The OCID of the project that contains the model.
- Component
Models List<ModelComponent Model> - The OCID list of active custom Key Value models that need to be composed.
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- Description string
- (Updatable) An optional description of the model.
- Display
Name string - (Updatable) A human-friendly name for the model, which can be changed.
- Dictionary<string, string>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- Is
Quick boolMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- Max
Training doubleTime In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- Model
Id string - Model
Version string - The model version
- Testing
Dataset ModelTesting Dataset - The base entity which is the input for creating and training a model.
- Training
Dataset ModelTraining Dataset - The base entity which is the input for creating and training a model.
- Validation
Dataset ModelValidation Dataset - The base entity which is the input for creating and training a model.
- Compartment
Id string - (Updatable) The compartment identifier.
- Model
Type string - The type of the Document model.
- Project
Id string - The OCID of the project that contains the model.
- Component
Models []ModelComponent Model Args - The OCID list of active custom Key Value models that need to be composed.
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- Description string
- (Updatable) An optional description of the model.
- Display
Name string - (Updatable) A human-friendly name for the model, which can be changed.
- map[string]string
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- Is
Quick boolMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- Max
Training float64Time In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- Model
Id string - Model
Version string - The model version
- Testing
Dataset ModelTesting Dataset Args - The base entity which is the input for creating and training a model.
- Training
Dataset ModelTraining Dataset Args - The base entity which is the input for creating and training a model.
- Validation
Dataset ModelValidation Dataset Args - The base entity which is the input for creating and training a model.
- compartment
Id String - (Updatable) The compartment identifier.
- model
Type String - The type of the Document model.
- project
Id String - The OCID of the project that contains the model.
- component
Models List<ModelComponent Model> - The OCID list of active custom Key Value models that need to be composed.
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description String
- (Updatable) An optional description of the model.
- display
Name String - (Updatable) A human-friendly name for the model, which can be changed.
- Map<String,String>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is
Quick BooleanMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- max
Training DoubleTime In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- model
Id String - model
Version String - The model version
- testing
Dataset ModelTesting Dataset - The base entity which is the input for creating and training a model.
- training
Dataset ModelTraining Dataset - The base entity which is the input for creating and training a model.
- validation
Dataset ModelValidation Dataset - The base entity which is the input for creating and training a model.
- compartment
Id string - (Updatable) The compartment identifier.
- model
Type string - The type of the Document model.
- project
Id string - The OCID of the project that contains the model.
- component
Models ModelComponent Model[] - The OCID list of active custom Key Value models that need to be composed.
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description string
- (Updatable) An optional description of the model.
- display
Name string - (Updatable) A human-friendly name for the model, which can be changed.
- {[key: string]: string}
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is
Quick booleanMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- max
Training numberTime In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- model
Id string - model
Version string - The model version
- testing
Dataset ModelTesting Dataset - The base entity which is the input for creating and training a model.
- training
Dataset ModelTraining Dataset - The base entity which is the input for creating and training a model.
- validation
Dataset ModelValidation Dataset - The base entity which is the input for creating and training a model.
- compartment_
id str - (Updatable) The compartment identifier.
- model_
type str - The type of the Document model.
- project_
id str - The OCID of the project that contains the model.
- component_
models Sequence[aidocument.Model Component Model Args] - The OCID list of active custom Key Value models that need to be composed.
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description str
- (Updatable) An optional description of the model.
- display_
name str - (Updatable) A human-friendly name for the model, which can be changed.
- Mapping[str, str]
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is_
quick_ boolmode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- max_
training_ floattime_ in_ hours - The maximum model training time in hours, expressed as a decimal fraction.
- model_
id str - model_
version str - The model version
- testing_
dataset aidocument.Model Testing Dataset Args - The base entity which is the input for creating and training a model.
- training_
dataset aidocument.Model Training Dataset Args - The base entity which is the input for creating and training a model.
- validation_
dataset aidocument.Model Validation Dataset Args - The base entity which is the input for creating and training a model.
- compartment
Id String - (Updatable) The compartment identifier.
- model
Type String - The type of the Document model.
- project
Id String - The OCID of the project that contains the model.
- component
Models List<Property Map> - The OCID list of active custom Key Value models that need to be composed.
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description String
- (Updatable) An optional description of the model.
- display
Name String - (Updatable) A human-friendly name for the model, which can be changed.
- Map<String>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is
Quick BooleanMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- max
Training NumberTime In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- model
Id String - model
Version String - The model version
- testing
Dataset Property Map - The base entity which is the input for creating and training a model.
- training
Dataset Property Map - The base entity which is the input for creating and training a model.
- validation
Dataset Property Map - The base entity which is the input for creating and training a model.
Outputs
All input properties are implicitly available as output properties. Additionally, the Model resource produces the following output properties:
- Id string
- The provider-assigned unique ID for this managed resource.
- Is
Composed boolModel - Set to true when the model is created by using multiple key value extraction models.
- Labels List<string>
- The collection of labels used to train the custom model.
- Lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- Metrics
List<Model
Metric> - Trained Model Metrics.
- State string
- The current state of the model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- Tenancy
Id string - The tenancy id of the model.
- Time
Created string - When the model was created, as an RFC3339 datetime string.
- Time
Updated string - When the model was updated, as an RFC3339 datetime string.
- Trained
Time doubleIn Hours - The total hours actually used for model training.
- Id string
- The provider-assigned unique ID for this managed resource.
- Is
Composed boolModel - Set to true when the model is created by using multiple key value extraction models.
- Labels []string
- The collection of labels used to train the custom model.
- Lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- Metrics
[]Model
Metric - Trained Model Metrics.
- State string
- The current state of the model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- Tenancy
Id string - The tenancy id of the model.
- Time
Created string - When the model was created, as an RFC3339 datetime string.
- Time
Updated string - When the model was updated, as an RFC3339 datetime string.
- Trained
Time float64In Hours - The total hours actually used for model training.
- id String
- The provider-assigned unique ID for this managed resource.
- is
Composed BooleanModel - Set to true when the model is created by using multiple key value extraction models.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycle
Details String - A message describing the current state in more detail, that can provide actionable information if training failed.
- metrics
List<Model
Metric> - Trained Model Metrics.
- state String
- The current state of the model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy
Id String - The tenancy id of the model.
- time
Created String - When the model was created, as an RFC3339 datetime string.
- time
Updated String - When the model was updated, as an RFC3339 datetime string.
- trained
Time DoubleIn Hours - The total hours actually used for model training.
- id string
- The provider-assigned unique ID for this managed resource.
- is
Composed booleanModel - Set to true when the model is created by using multiple key value extraction models.
- labels string[]
- The collection of labels used to train the custom model.
- lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- metrics
Model
Metric[] - Trained Model Metrics.
- state string
- The current state of the model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy
Id string - The tenancy id of the model.
- time
Created string - When the model was created, as an RFC3339 datetime string.
- time
Updated string - When the model was updated, as an RFC3339 datetime string.
- trained
Time numberIn Hours - The total hours actually used for model training.
- id str
- The provider-assigned unique ID for this managed resource.
- is_
composed_ boolmodel - Set to true when the model is created by using multiple key value extraction models.
- labels Sequence[str]
- The collection of labels used to train the custom model.
- lifecycle_
details str - A message describing the current state in more detail, that can provide actionable information if training failed.
- metrics
Sequence[aidocument.
Model Metric] - Trained Model Metrics.
- state str
- The current state of the model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy_
id str - The tenancy id of the model.
- time_
created str - When the model was created, as an RFC3339 datetime string.
- time_
updated str - When the model was updated, as an RFC3339 datetime string.
- trained_
time_ floatin_ hours - The total hours actually used for model training.
- id String
- The provider-assigned unique ID for this managed resource.
- is
Composed BooleanModel - Set to true when the model is created by using multiple key value extraction models.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycle
Details String - A message describing the current state in more detail, that can provide actionable information if training failed.
- metrics List<Property Map>
- Trained Model Metrics.
- state String
- The current state of the model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy
Id String - The tenancy id of the model.
- time
Created String - When the model was created, as an RFC3339 datetime string.
- time
Updated String - When the model was updated, as an RFC3339 datetime string.
- trained
Time NumberIn Hours - The total hours actually used for model training.
Look up Existing Model Resource
Get an existing Model resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: ModelState, opts?: CustomResourceOptions): Model
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
compartment_id: Optional[str] = None,
component_models: Optional[Sequence[_aidocument.ModelComponentModelArgs]] = None,
defined_tags: Optional[Mapping[str, str]] = None,
description: Optional[str] = None,
display_name: Optional[str] = None,
freeform_tags: Optional[Mapping[str, str]] = None,
is_composed_model: Optional[bool] = None,
is_quick_mode: Optional[bool] = None,
labels: Optional[Sequence[str]] = None,
lifecycle_details: Optional[str] = None,
max_training_time_in_hours: Optional[float] = None,
metrics: Optional[Sequence[_aidocument.ModelMetricArgs]] = None,
model_id: Optional[str] = None,
model_type: Optional[str] = None,
model_version: Optional[str] = None,
project_id: Optional[str] = None,
state: Optional[str] = None,
system_tags: Optional[Mapping[str, str]] = None,
tenancy_id: Optional[str] = None,
testing_dataset: Optional[_aidocument.ModelTestingDatasetArgs] = None,
time_created: Optional[str] = None,
time_updated: Optional[str] = None,
trained_time_in_hours: Optional[float] = None,
training_dataset: Optional[_aidocument.ModelTrainingDatasetArgs] = None,
validation_dataset: Optional[_aidocument.ModelValidationDatasetArgs] = None) -> Model
func GetModel(ctx *Context, name string, id IDInput, state *ModelState, opts ...ResourceOption) (*Model, error)
public static Model Get(string name, Input<string> id, ModelState? state, CustomResourceOptions? opts = null)
public static Model get(String name, Output<String> id, ModelState state, CustomResourceOptions options)
Resource lookup is not supported in YAML
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Compartment
Id string - (Updatable) The compartment identifier.
- Component
Models List<ModelComponent Model> - The OCID list of active custom Key Value models that need to be composed.
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- Description string
- (Updatable) An optional description of the model.
- Display
Name string - (Updatable) A human-friendly name for the model, which can be changed.
- Dictionary<string, string>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- Is
Composed boolModel - Set to true when the model is created by using multiple key value extraction models.
- Is
Quick boolMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- Labels List<string>
- The collection of labels used to train the custom model.
- Lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- Max
Training doubleTime In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- Metrics
List<Model
Metric> - Trained Model Metrics.
- Model
Id string - Model
Type string - The type of the Document model.
- Model
Version string - The model version
- Project
Id string - The OCID of the project that contains the model.
- State string
- The current state of the model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- Tenancy
Id string - The tenancy id of the model.
- Testing
Dataset ModelTesting Dataset - The base entity which is the input for creating and training a model.
- Time
Created string - When the model was created, as an RFC3339 datetime string.
- Time
Updated string - When the model was updated, as an RFC3339 datetime string.
- Trained
Time doubleIn Hours - The total hours actually used for model training.
- Training
Dataset ModelTraining Dataset - The base entity which is the input for creating and training a model.
- Validation
Dataset ModelValidation Dataset - The base entity which is the input for creating and training a model.
- Compartment
Id string - (Updatable) The compartment identifier.
- Component
Models []ModelComponent Model Args - The OCID list of active custom Key Value models that need to be composed.
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- Description string
- (Updatable) An optional description of the model.
- Display
Name string - (Updatable) A human-friendly name for the model, which can be changed.
- map[string]string
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- Is
Composed boolModel - Set to true when the model is created by using multiple key value extraction models.
- Is
Quick boolMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- Labels []string
- The collection of labels used to train the custom model.
- Lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- Max
Training float64Time In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- Metrics
[]Model
Metric Args - Trained Model Metrics.
- Model
Id string - Model
Type string - The type of the Document model.
- Model
Version string - The model version
- Project
Id string - The OCID of the project that contains the model.
- State string
- The current state of the model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- Tenancy
Id string - The tenancy id of the model.
- Testing
Dataset ModelTesting Dataset Args - The base entity which is the input for creating and training a model.
- Time
Created string - When the model was created, as an RFC3339 datetime string.
- Time
Updated string - When the model was updated, as an RFC3339 datetime string.
- Trained
Time float64In Hours - The total hours actually used for model training.
- Training
Dataset ModelTraining Dataset Args - The base entity which is the input for creating and training a model.
- Validation
Dataset ModelValidation Dataset Args - The base entity which is the input for creating and training a model.
- compartment
Id String - (Updatable) The compartment identifier.
- component
Models List<ModelComponent Model> - The OCID list of active custom Key Value models that need to be composed.
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description String
- (Updatable) An optional description of the model.
- display
Name String - (Updatable) A human-friendly name for the model, which can be changed.
- Map<String,String>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is
Composed BooleanModel - Set to true when the model is created by using multiple key value extraction models.
- is
Quick BooleanMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycle
Details String - A message describing the current state in more detail, that can provide actionable information if training failed.
- max
Training DoubleTime In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- metrics
List<Model
Metric> - Trained Model Metrics.
- model
Id String - model
Type String - The type of the Document model.
- model
Version String - The model version
- project
Id String - The OCID of the project that contains the model.
- state String
- The current state of the model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy
Id String - The tenancy id of the model.
- testing
Dataset ModelTesting Dataset - The base entity which is the input for creating and training a model.
- time
Created String - When the model was created, as an RFC3339 datetime string.
- time
Updated String - When the model was updated, as an RFC3339 datetime string.
- trained
Time DoubleIn Hours - The total hours actually used for model training.
- training
Dataset ModelTraining Dataset - The base entity which is the input for creating and training a model.
- validation
Dataset ModelValidation Dataset - The base entity which is the input for creating and training a model.
- compartment
Id string - (Updatable) The compartment identifier.
- component
Models ModelComponent Model[] - The OCID list of active custom Key Value models that need to be composed.
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description string
- (Updatable) An optional description of the model.
- display
Name string - (Updatable) A human-friendly name for the model, which can be changed.
- {[key: string]: string}
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is
Composed booleanModel - Set to true when the model is created by using multiple key value extraction models.
- is
Quick booleanMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- labels string[]
- The collection of labels used to train the custom model.
- lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
- max
Training numberTime In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- metrics
Model
Metric[] - Trained Model Metrics.
- model
Id string - model
Type string - The type of the Document model.
- model
Version string - The model version
- project
Id string - The OCID of the project that contains the model.
- state string
- The current state of the model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy
Id string - The tenancy id of the model.
- testing
Dataset ModelTesting Dataset - The base entity which is the input for creating and training a model.
- time
Created string - When the model was created, as an RFC3339 datetime string.
- time
Updated string - When the model was updated, as an RFC3339 datetime string.
- trained
Time numberIn Hours - The total hours actually used for model training.
- training
Dataset ModelTraining Dataset - The base entity which is the input for creating and training a model.
- validation
Dataset ModelValidation Dataset - The base entity which is the input for creating and training a model.
- compartment_
id str - (Updatable) The compartment identifier.
- component_
models Sequence[aidocument.Model Component Model Args] - The OCID list of active custom Key Value models that need to be composed.
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description str
- (Updatable) An optional description of the model.
- display_
name str - (Updatable) A human-friendly name for the model, which can be changed.
- Mapping[str, str]
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is_
composed_ boolmodel - Set to true when the model is created by using multiple key value extraction models.
- is_
quick_ boolmode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- labels Sequence[str]
- The collection of labels used to train the custom model.
- lifecycle_
details str - A message describing the current state in more detail, that can provide actionable information if training failed.
- max_
training_ floattime_ in_ hours - The maximum model training time in hours, expressed as a decimal fraction.
- metrics
Sequence[aidocument.
Model Metric Args] - Trained Model Metrics.
- model_
id str - model_
type str - The type of the Document model.
- model_
version str - The model version
- project_
id str - The OCID of the project that contains the model.
- state str
- The current state of the model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy_
id str - The tenancy id of the model.
- testing_
dataset aidocument.Model Testing Dataset Args - The base entity which is the input for creating and training a model.
- time_
created str - When the model was created, as an RFC3339 datetime string.
- time_
updated str - When the model was updated, as an RFC3339 datetime string.
- trained_
time_ floatin_ hours - The total hours actually used for model training.
- training_
dataset aidocument.Model Training Dataset Args - The base entity which is the input for creating and training a model.
- validation_
dataset aidocument.Model Validation Dataset Args - The base entity which is the input for creating and training a model.
- compartment
Id String - (Updatable) The compartment identifier.
- component
Models List<Property Map> - The OCID list of active custom Key Value models that need to be composed.
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:
{"foo-namespace": {"bar-key": "value"}}
- description String
- (Updatable) An optional description of the model.
- display
Name String - (Updatable) A human-friendly name for the model, which can be changed.
- Map<String>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:
{"bar-key": "value"}
- is
Composed BooleanModel - Set to true when the model is created by using multiple key value extraction models.
- is
Quick BooleanMode - Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycle
Details String - A message describing the current state in more detail, that can provide actionable information if training failed.
- max
Training NumberTime In Hours - The maximum model training time in hours, expressed as a decimal fraction.
- metrics List<Property Map>
- Trained Model Metrics.
- model
Id String - model
Type String - The type of the Document model.
- model
Version String - The model version
- project
Id String - The OCID of the project that contains the model.
- state String
- The current state of the model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:
{"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy
Id String - The tenancy id of the model.
- testing
Dataset Property Map - The base entity which is the input for creating and training a model.
- time
Created String - When the model was created, as an RFC3339 datetime string.
- time
Updated String - When the model was updated, as an RFC3339 datetime string.
- trained
Time NumberIn Hours - The total hours actually used for model training.
- training
Dataset Property Map - The base entity which is the input for creating and training a model.
- validation
Dataset Property Map - The base entity which is the input for creating and training a model.
Supporting Types
ModelComponentModel, ModelComponentModelArgs
ModelMetric, ModelMetricArgs
- Dataset
Summaries List<ModelMetric Dataset Summary> - Summary of count of samples used during model training.
- Label
Metrics List<ModelReports Metric Label Metrics Report> - List of metrics entries per label.
- Model
Type string - The type of the Document model.
- Overall
Metrics List<ModelReports Metric Overall Metrics Report> - Overall Metrics report for Document Classification Model.
- Dataset
Summaries []ModelMetric Dataset Summary - Summary of count of samples used during model training.
- Label
Metrics []ModelReports Metric Label Metrics Report - List of metrics entries per label.
- Model
Type string - The type of the Document model.
- Overall
Metrics []ModelReports Metric Overall Metrics Report - Overall Metrics report for Document Classification Model.
- dataset
Summaries List<ModelMetric Dataset Summary> - Summary of count of samples used during model training.
- label
Metrics List<ModelReports Metric Label Metrics Report> - List of metrics entries per label.
- model
Type String - The type of the Document model.
- overall
Metrics List<ModelReports Metric Overall Metrics Report> - Overall Metrics report for Document Classification Model.
- dataset
Summaries ModelMetric Dataset Summary[] - Summary of count of samples used during model training.
- label
Metrics ModelReports Metric Label Metrics Report[] - List of metrics entries per label.
- model
Type string - The type of the Document model.
- overall
Metrics ModelReports Metric Overall Metrics Report[] - Overall Metrics report for Document Classification Model.
- dataset_
summaries Sequence[aidocument.Model Metric Dataset Summary] - Summary of count of samples used during model training.
- label_
metrics_ Sequence[aidocument.reports Model Metric Label Metrics Report] - List of metrics entries per label.
- model_
type str - The type of the Document model.
- overall_
metrics_ Sequence[aidocument.reports Model Metric Overall Metrics Report] - Overall Metrics report for Document Classification Model.
- dataset
Summaries List<Property Map> - Summary of count of samples used during model training.
- label
Metrics List<Property Map>Reports - List of metrics entries per label.
- model
Type String - The type of the Document model.
- overall
Metrics List<Property Map>Reports - Overall Metrics report for Document Classification Model.
ModelMetricDatasetSummary, ModelMetricDatasetSummaryArgs
- Test
Sample intCount - Number of samples used for testing the model.
- Training
Sample intCount - Number of samples used for training the model.
- Validation
Sample intCount - Number of samples used for validating the model.
- Test
Sample intCount - Number of samples used for testing the model.
- Training
Sample intCount - Number of samples used for training the model.
- Validation
Sample intCount - Number of samples used for validating the model.
- test
Sample IntegerCount - Number of samples used for testing the model.
- training
Sample IntegerCount - Number of samples used for training the model.
- validation
Sample IntegerCount - Number of samples used for validating the model.
- test
Sample numberCount - Number of samples used for testing the model.
- training
Sample numberCount - Number of samples used for training the model.
- validation
Sample numberCount - Number of samples used for validating the model.
- test_
sample_ intcount - Number of samples used for testing the model.
- training_
sample_ intcount - Number of samples used for training the model.
- validation_
sample_ intcount - Number of samples used for validating the model.
- test
Sample NumberCount - Number of samples used for testing the model.
- training
Sample NumberCount - Number of samples used for training the model.
- validation
Sample NumberCount - Number of samples used for validating the model.
ModelMetricLabelMetricsReport, ModelMetricLabelMetricsReportArgs
- Confidence
Entries List<ModelMetric Label Metrics Report Confidence Entry> - List of document classification confidence report.
- Document
Count int - Total test documents in the label.
- Label string
- Label name
- double
- Mean average precision under different thresholds
- Confidence
Entries []ModelMetric Label Metrics Report Confidence Entry - List of document classification confidence report.
- Document
Count int - Total test documents in the label.
- Label string
- Label name
- float64
- Mean average precision under different thresholds
- confidence
Entries List<ModelMetric Label Metrics Report Confidence Entry> - List of document classification confidence report.
- document
Count Integer - Total test documents in the label.
- label String
- Label name
- Double
- Mean average precision under different thresholds
- confidence
Entries ModelMetric Label Metrics Report Confidence Entry[] - List of document classification confidence report.
- document
Count number - Total test documents in the label.
- label string
- Label name
- number
- Mean average precision under different thresholds
- confidence_
entries Sequence[aidocument.Model Metric Label Metrics Report Confidence Entry] - List of document classification confidence report.
- document_
count int - Total test documents in the label.
- label str
- Label name
- mean_
average_ floatprecision - Mean average precision under different thresholds
- confidence
Entries List<Property Map> - List of document classification confidence report.
- document
Count Number - Total test documents in the label.
- label String
- Label name
- Number
- Mean average precision under different thresholds
ModelMetricLabelMetricsReportConfidenceEntry, ModelMetricLabelMetricsReportConfidenceEntryArgs
ModelMetricOverallMetricsReport, ModelMetricOverallMetricsReportArgs
- Confidence
Entries List<ModelMetric Overall Metrics Report Confidence Entry> - List of document classification confidence report.
- Document
Count int - Total test documents in the label.
- double
- Mean average precision under different thresholds
- Confidence
Entries []ModelMetric Overall Metrics Report Confidence Entry - List of document classification confidence report.
- Document
Count int - Total test documents in the label.
- float64
- Mean average precision under different thresholds
- confidence
Entries List<ModelMetric Overall Metrics Report Confidence Entry> - List of document classification confidence report.
- document
Count Integer - Total test documents in the label.
- Double
- Mean average precision under different thresholds
- confidence
Entries ModelMetric Overall Metrics Report Confidence Entry[] - List of document classification confidence report.
- document
Count number - Total test documents in the label.
- number
- Mean average precision under different thresholds
- confidence_
entries Sequence[aidocument.Model Metric Overall Metrics Report Confidence Entry] - List of document classification confidence report.
- document_
count int - Total test documents in the label.
- mean_
average_ floatprecision - Mean average precision under different thresholds
- confidence
Entries List<Property Map> - List of document classification confidence report.
- document
Count Number - Total test documents in the label.
- Number
- Mean average precision under different thresholds
ModelMetricOverallMetricsReportConfidenceEntry, ModelMetricOverallMetricsReportConfidenceEntryArgs
ModelTestingDataset, ModelTestingDatasetArgs
- Dataset
Type string - The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Dataset
Type string - The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- dataset
Type String - The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
- dataset
Type string - The dataset type, based on where it is stored.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id string - OCID of the Data Labeling dataset.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file.
- dataset_
type str - The dataset type, based on where it is stored.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_
id str - OCID of the Data Labeling dataset.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file.
- dataset
Type String - The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
ModelTrainingDataset, ModelTrainingDatasetArgs
- Dataset
Type string - The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Dataset
Type string - The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- dataset
Type String - The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
- dataset
Type string - The dataset type, based on where it is stored.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id string - OCID of the Data Labeling dataset.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file.
- dataset_
type str - The dataset type, based on where it is stored.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_
id str - OCID of the Data Labeling dataset.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file.
- dataset
Type String - The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
ModelValidationDataset, ModelValidationDatasetArgs
- Dataset
Type string - The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
The object name of the input data file.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- Dataset
Type string - The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- Dataset
Id string - OCID of the Data Labeling dataset.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
The object name of the input data file.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- dataset
Type String - The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
The object name of the input data file.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- dataset
Type string - The dataset type, based on where it is stored.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id string - OCID of the Data Labeling dataset.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
The object name of the input data file.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- dataset_
type str - The dataset type, based on where it is stored.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_
id str - OCID of the Data Labeling dataset.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
The object name of the input data file.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- dataset
Type String - The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- dataset
Id String - OCID of the Data Labeling dataset.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
The object name of the input data file.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
Import
Models can be imported using the id
, e.g.
$ pulumi import oci:AiDocument/model:Model test_model "id"
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
oci
Terraform Provider.