oci.AiLanguage.Model
Explore with Pulumi AI
This resource provides the Model resource in Oracle Cloud Infrastructure Ai Language service.
Creates a new model for training and train the model with date provided.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = new oci.ailanguage.Model("test_model", {
compartmentId: compartmentId,
modelDetails: {
modelType: modelModelDetailsModelType,
classificationMode: {
classificationMode: modelModelDetailsClassificationModeClassificationMode,
version: modelModelDetailsClassificationModeVersion,
},
languageCode: modelModelDetailsLanguageCode,
version: modelModelDetailsVersion,
},
projectId: testProject.id,
definedTags: {
"foo-namespace.bar-key": "value",
},
description: modelDescription,
displayName: modelDisplayName,
freeformTags: {
"bar-key": "value",
},
testStrategy: {
strategyType: modelTestStrategyStrategyType,
testingDataset: {
datasetType: modelTestStrategyTestingDatasetDatasetType,
datasetId: testDataset.id,
locationDetails: {
bucket: modelTestStrategyTestingDatasetLocationDetailsBucket,
locationType: modelTestStrategyTestingDatasetLocationDetailsLocationType,
namespace: modelTestStrategyTestingDatasetLocationDetailsNamespace,
objectNames: modelTestStrategyTestingDatasetLocationDetailsObjectNames,
},
},
validationDataset: {
datasetType: modelTestStrategyValidationDatasetDatasetType,
datasetId: testDataset.id,
locationDetails: {
bucket: modelTestStrategyValidationDatasetLocationDetailsBucket,
locationType: modelTestStrategyValidationDatasetLocationDetailsLocationType,
namespace: modelTestStrategyValidationDatasetLocationDetailsNamespace,
objectNames: modelTestStrategyValidationDatasetLocationDetailsObjectNames,
},
},
},
trainingDataset: {
datasetType: modelTrainingDatasetDatasetType,
datasetId: testDataset.id,
locationDetails: {
bucket: modelTrainingDatasetLocationDetailsBucket,
locationType: modelTrainingDatasetLocationDetailsLocationType,
namespace: modelTrainingDatasetLocationDetailsNamespace,
objectNames: modelTrainingDatasetLocationDetailsObjectNames,
},
},
});
import pulumi
import pulumi_oci as oci
test_model = oci.ai_language.Model("test_model",
compartment_id=compartment_id,
model_details={
"model_type": model_model_details_model_type,
"classification_mode": {
"classification_mode": model_model_details_classification_mode_classification_mode,
"version": model_model_details_classification_mode_version,
},
"language_code": model_model_details_language_code,
"version": model_model_details_version,
},
project_id=test_project["id"],
defined_tags={
"foo-namespace.bar-key": "value",
},
description=model_description,
display_name=model_display_name,
freeform_tags={
"bar-key": "value",
},
test_strategy={
"strategy_type": model_test_strategy_strategy_type,
"testing_dataset": {
"dataset_type": model_test_strategy_testing_dataset_dataset_type,
"dataset_id": test_dataset["id"],
"location_details": {
"bucket": model_test_strategy_testing_dataset_location_details_bucket,
"location_type": model_test_strategy_testing_dataset_location_details_location_type,
"namespace": model_test_strategy_testing_dataset_location_details_namespace,
"object_names": model_test_strategy_testing_dataset_location_details_object_names,
},
},
"validation_dataset": {
"dataset_type": model_test_strategy_validation_dataset_dataset_type,
"dataset_id": test_dataset["id"],
"location_details": {
"bucket": model_test_strategy_validation_dataset_location_details_bucket,
"location_type": model_test_strategy_validation_dataset_location_details_location_type,
"namespace": model_test_strategy_validation_dataset_location_details_namespace,
"object_names": model_test_strategy_validation_dataset_location_details_object_names,
},
},
},
training_dataset={
"dataset_type": model_training_dataset_dataset_type,
"dataset_id": test_dataset["id"],
"location_details": {
"bucket": model_training_dataset_location_details_bucket,
"location_type": model_training_dataset_location_details_location_type,
"namespace": model_training_dataset_location_details_namespace,
"object_names": model_training_dataset_location_details_object_names,
},
})
package main
import (
"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/AiLanguage"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := AiLanguage.NewModel(ctx, "test_model", &AiLanguage.ModelArgs{
CompartmentId: pulumi.Any(compartmentId),
ModelDetails: &ailanguage.ModelModelDetailsArgs{
ModelType: pulumi.Any(modelModelDetailsModelType),
ClassificationMode: &ailanguage.ModelModelDetailsClassificationModeArgs{
ClassificationMode: pulumi.Any(modelModelDetailsClassificationModeClassificationMode),
Version: pulumi.Any(modelModelDetailsClassificationModeVersion),
},
LanguageCode: pulumi.Any(modelModelDetailsLanguageCode),
Version: pulumi.Any(modelModelDetailsVersion),
},
ProjectId: pulumi.Any(testProject.Id),
DefinedTags: pulumi.StringMap{
"foo-namespace.bar-key": pulumi.String("value"),
},
Description: pulumi.Any(modelDescription),
DisplayName: pulumi.Any(modelDisplayName),
FreeformTags: pulumi.StringMap{
"bar-key": pulumi.String("value"),
},
TestStrategy: &ailanguage.ModelTestStrategyArgs{
StrategyType: pulumi.Any(modelTestStrategyStrategyType),
TestingDataset: &ailanguage.ModelTestStrategyTestingDatasetArgs{
DatasetType: pulumi.Any(modelTestStrategyTestingDatasetDatasetType),
DatasetId: pulumi.Any(testDataset.Id),
LocationDetails: &ailanguage.ModelTestStrategyTestingDatasetLocationDetailsArgs{
Bucket: pulumi.Any(modelTestStrategyTestingDatasetLocationDetailsBucket),
LocationType: pulumi.Any(modelTestStrategyTestingDatasetLocationDetailsLocationType),
Namespace: pulumi.Any(modelTestStrategyTestingDatasetLocationDetailsNamespace),
ObjectNames: pulumi.Any(modelTestStrategyTestingDatasetLocationDetailsObjectNames),
},
},
ValidationDataset: &ailanguage.ModelTestStrategyValidationDatasetArgs{
DatasetType: pulumi.Any(modelTestStrategyValidationDatasetDatasetType),
DatasetId: pulumi.Any(testDataset.Id),
LocationDetails: &ailanguage.ModelTestStrategyValidationDatasetLocationDetailsArgs{
Bucket: pulumi.Any(modelTestStrategyValidationDatasetLocationDetailsBucket),
LocationType: pulumi.Any(modelTestStrategyValidationDatasetLocationDetailsLocationType),
Namespace: pulumi.Any(modelTestStrategyValidationDatasetLocationDetailsNamespace),
ObjectNames: pulumi.Any(modelTestStrategyValidationDatasetLocationDetailsObjectNames),
},
},
},
TrainingDataset: &ailanguage.ModelTrainingDatasetArgs{
DatasetType: pulumi.Any(modelTrainingDatasetDatasetType),
DatasetId: pulumi.Any(testDataset.Id),
LocationDetails: &ailanguage.ModelTrainingDatasetLocationDetailsArgs{
Bucket: pulumi.Any(modelTrainingDatasetLocationDetailsBucket),
LocationType: pulumi.Any(modelTrainingDatasetLocationDetailsLocationType),
Namespace: pulumi.Any(modelTrainingDatasetLocationDetailsNamespace),
ObjectNames: pulumi.Any(modelTrainingDatasetLocationDetailsObjectNames),
},
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() =>
{
var testModel = new Oci.AiLanguage.Model("test_model", new()
{
CompartmentId = compartmentId,
ModelDetails = new Oci.AiLanguage.Inputs.ModelModelDetailsArgs
{
ModelType = modelModelDetailsModelType,
ClassificationMode = new Oci.AiLanguage.Inputs.ModelModelDetailsClassificationModeArgs
{
ClassificationMode = modelModelDetailsClassificationModeClassificationMode,
Version = modelModelDetailsClassificationModeVersion,
},
LanguageCode = modelModelDetailsLanguageCode,
Version = modelModelDetailsVersion,
},
ProjectId = testProject.Id,
DefinedTags =
{
{ "foo-namespace.bar-key", "value" },
},
Description = modelDescription,
DisplayName = modelDisplayName,
FreeformTags =
{
{ "bar-key", "value" },
},
TestStrategy = new Oci.AiLanguage.Inputs.ModelTestStrategyArgs
{
StrategyType = modelTestStrategyStrategyType,
TestingDataset = new Oci.AiLanguage.Inputs.ModelTestStrategyTestingDatasetArgs
{
DatasetType = modelTestStrategyTestingDatasetDatasetType,
DatasetId = testDataset.Id,
LocationDetails = new Oci.AiLanguage.Inputs.ModelTestStrategyTestingDatasetLocationDetailsArgs
{
Bucket = modelTestStrategyTestingDatasetLocationDetailsBucket,
LocationType = modelTestStrategyTestingDatasetLocationDetailsLocationType,
Namespace = modelTestStrategyTestingDatasetLocationDetailsNamespace,
ObjectNames = modelTestStrategyTestingDatasetLocationDetailsObjectNames,
},
},
ValidationDataset = new Oci.AiLanguage.Inputs.ModelTestStrategyValidationDatasetArgs
{
DatasetType = modelTestStrategyValidationDatasetDatasetType,
DatasetId = testDataset.Id,
LocationDetails = new Oci.AiLanguage.Inputs.ModelTestStrategyValidationDatasetLocationDetailsArgs
{
Bucket = modelTestStrategyValidationDatasetLocationDetailsBucket,
LocationType = modelTestStrategyValidationDatasetLocationDetailsLocationType,
Namespace = modelTestStrategyValidationDatasetLocationDetailsNamespace,
ObjectNames = modelTestStrategyValidationDatasetLocationDetailsObjectNames,
},
},
},
TrainingDataset = new Oci.AiLanguage.Inputs.ModelTrainingDatasetArgs
{
DatasetType = modelTrainingDatasetDatasetType,
DatasetId = testDataset.Id,
LocationDetails = new Oci.AiLanguage.Inputs.ModelTrainingDatasetLocationDetailsArgs
{
Bucket = modelTrainingDatasetLocationDetailsBucket,
LocationType = modelTrainingDatasetLocationDetailsLocationType,
Namespace = modelTrainingDatasetLocationDetailsNamespace,
ObjectNames = modelTrainingDatasetLocationDetailsObjectNames,
},
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiLanguage.Model;
import com.pulumi.oci.AiLanguage.ModelArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelModelDetailsArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelModelDetailsClassificationModeArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTestStrategyArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTestStrategyTestingDatasetArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTestStrategyTestingDatasetLocationDetailsArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTestStrategyValidationDatasetArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTestStrategyValidationDatasetLocationDetailsArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTrainingDatasetArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTrainingDatasetLocationDetailsArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var testModel = new Model("testModel", ModelArgs.builder()
.compartmentId(compartmentId)
.modelDetails(ModelModelDetailsArgs.builder()
.modelType(modelModelDetailsModelType)
.classificationMode(ModelModelDetailsClassificationModeArgs.builder()
.classificationMode(modelModelDetailsClassificationModeClassificationMode)
.version(modelModelDetailsClassificationModeVersion)
.build())
.languageCode(modelModelDetailsLanguageCode)
.version(modelModelDetailsVersion)
.build())
.projectId(testProject.id())
.definedTags(Map.of("foo-namespace.bar-key", "value"))
.description(modelDescription)
.displayName(modelDisplayName)
.freeformTags(Map.of("bar-key", "value"))
.testStrategy(ModelTestStrategyArgs.builder()
.strategyType(modelTestStrategyStrategyType)
.testingDataset(ModelTestStrategyTestingDatasetArgs.builder()
.datasetType(modelTestStrategyTestingDatasetDatasetType)
.datasetId(testDataset.id())
.locationDetails(ModelTestStrategyTestingDatasetLocationDetailsArgs.builder()
.bucket(modelTestStrategyTestingDatasetLocationDetailsBucket)
.locationType(modelTestStrategyTestingDatasetLocationDetailsLocationType)
.namespace(modelTestStrategyTestingDatasetLocationDetailsNamespace)
.objectNames(modelTestStrategyTestingDatasetLocationDetailsObjectNames)
.build())
.build())
.validationDataset(ModelTestStrategyValidationDatasetArgs.builder()
.datasetType(modelTestStrategyValidationDatasetDatasetType)
.datasetId(testDataset.id())
.locationDetails(ModelTestStrategyValidationDatasetLocationDetailsArgs.builder()
.bucket(modelTestStrategyValidationDatasetLocationDetailsBucket)
.locationType(modelTestStrategyValidationDatasetLocationDetailsLocationType)
.namespace(modelTestStrategyValidationDatasetLocationDetailsNamespace)
.objectNames(modelTestStrategyValidationDatasetLocationDetailsObjectNames)
.build())
.build())
.build())
.trainingDataset(ModelTrainingDatasetArgs.builder()
.datasetType(modelTrainingDatasetDatasetType)
.datasetId(testDataset.id())
.locationDetails(ModelTrainingDatasetLocationDetailsArgs.builder()
.bucket(modelTrainingDatasetLocationDetailsBucket)
.locationType(modelTrainingDatasetLocationDetailsLocationType)
.namespace(modelTrainingDatasetLocationDetailsNamespace)
.objectNames(modelTrainingDatasetLocationDetailsObjectNames)
.build())
.build())
.build());
}
}
resources:
testModel:
type: oci:AiLanguage:Model
name: test_model
properties:
compartmentId: ${compartmentId}
modelDetails:
modelType: ${modelModelDetailsModelType}
classificationMode:
classificationMode: ${modelModelDetailsClassificationModeClassificationMode}
version: ${modelModelDetailsClassificationModeVersion}
languageCode: ${modelModelDetailsLanguageCode}
version: ${modelModelDetailsVersion}
projectId: ${testProject.id}
definedTags:
foo-namespace.bar-key: value
description: ${modelDescription}
displayName: ${modelDisplayName}
freeformTags:
bar-key: value
testStrategy:
strategyType: ${modelTestStrategyStrategyType}
testingDataset:
datasetType: ${modelTestStrategyTestingDatasetDatasetType}
datasetId: ${testDataset.id}
locationDetails:
bucket: ${modelTestStrategyTestingDatasetLocationDetailsBucket}
locationType: ${modelTestStrategyTestingDatasetLocationDetailsLocationType}
namespace: ${modelTestStrategyTestingDatasetLocationDetailsNamespace}
objectNames: ${modelTestStrategyTestingDatasetLocationDetailsObjectNames}
validationDataset:
datasetType: ${modelTestStrategyValidationDatasetDatasetType}
datasetId: ${testDataset.id}
locationDetails:
bucket: ${modelTestStrategyValidationDatasetLocationDetailsBucket}
locationType: ${modelTestStrategyValidationDatasetLocationDetailsLocationType}
namespace: ${modelTestStrategyValidationDatasetLocationDetailsNamespace}
objectNames: ${modelTestStrategyValidationDatasetLocationDetailsObjectNames}
trainingDataset:
datasetType: ${modelTrainingDatasetDatasetType}
datasetId: ${testDataset.id}
locationDetails:
bucket: ${modelTrainingDatasetLocationDetailsBucket}
locationType: ${modelTrainingDatasetLocationDetailsLocationType}
namespace: ${modelTrainingDatasetLocationDetailsNamespace}
objectNames: ${modelTrainingDatasetLocationDetailsObjectNames}
Create Model Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new Model(name: string, args: ModelArgs, opts?: CustomResourceOptions);
@overload
def Model(resource_name: str,
args: ModelArgs,
opts: Optional[ResourceOptions] = None)
@overload
def Model(resource_name: str,
opts: Optional[ResourceOptions] = None,
compartment_id: Optional[str] = None,
model_details: Optional[_ailanguage.ModelModelDetailsArgs] = None,
project_id: Optional[str] = None,
training_dataset: Optional[_ailanguage.ModelTrainingDatasetArgs] = None,
defined_tags: Optional[Mapping[str, str]] = None,
description: Optional[str] = None,
display_name: Optional[str] = None,
freeform_tags: Optional[Mapping[str, str]] = None,
test_strategy: Optional[_ailanguage.ModelTestStrategyArgs] = None)
func NewModel(ctx *Context, name string, args ModelArgs, opts ...ResourceOption) (*Model, error)
public Model(string name, ModelArgs args, CustomResourceOptions? opts = null)
type: oci:AiLanguage:Model
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var examplemodelResourceResourceFromAiLanguagemodel = new Oci.AiLanguage.Model("examplemodelResourceResourceFromAiLanguagemodel", new()
{
CompartmentId = "string",
ModelDetails = new Oci.AiLanguage.Inputs.ModelModelDetailsArgs
{
ModelType = "string",
ClassificationMode = new Oci.AiLanguage.Inputs.ModelModelDetailsClassificationModeArgs
{
ClassificationMode = "string",
Version = "string",
},
LanguageCode = "string",
Version = "string",
},
ProjectId = "string",
TrainingDataset = new Oci.AiLanguage.Inputs.ModelTrainingDatasetArgs
{
DatasetType = "string",
DatasetId = "string",
LocationDetails = new Oci.AiLanguage.Inputs.ModelTrainingDatasetLocationDetailsArgs
{
Bucket = "string",
LocationType = "string",
Namespace = "string",
ObjectNames = new[]
{
"string",
},
},
},
DefinedTags =
{
{ "string", "string" },
},
Description = "string",
DisplayName = "string",
FreeformTags =
{
{ "string", "string" },
},
TestStrategy = new Oci.AiLanguage.Inputs.ModelTestStrategyArgs
{
StrategyType = "string",
TestingDataset = new Oci.AiLanguage.Inputs.ModelTestStrategyTestingDatasetArgs
{
DatasetType = "string",
DatasetId = "string",
LocationDetails = new Oci.AiLanguage.Inputs.ModelTestStrategyTestingDatasetLocationDetailsArgs
{
Bucket = "string",
LocationType = "string",
Namespace = "string",
ObjectNames = new[]
{
"string",
},
},
},
ValidationDataset = new Oci.AiLanguage.Inputs.ModelTestStrategyValidationDatasetArgs
{
DatasetType = "string",
DatasetId = "string",
LocationDetails = new Oci.AiLanguage.Inputs.ModelTestStrategyValidationDatasetLocationDetailsArgs
{
Bucket = "string",
LocationType = "string",
Namespace = "string",
ObjectNames = new[]
{
"string",
},
},
},
},
});
example, err := AiLanguage.NewModel(ctx, "examplemodelResourceResourceFromAiLanguagemodel", &AiLanguage.ModelArgs{
CompartmentId: pulumi.String("string"),
ModelDetails: &ailanguage.ModelModelDetailsArgs{
ModelType: pulumi.String("string"),
ClassificationMode: &ailanguage.ModelModelDetailsClassificationModeArgs{
ClassificationMode: pulumi.String("string"),
Version: pulumi.String("string"),
},
LanguageCode: pulumi.String("string"),
Version: pulumi.String("string"),
},
ProjectId: pulumi.String("string"),
TrainingDataset: &ailanguage.ModelTrainingDatasetArgs{
DatasetType: pulumi.String("string"),
DatasetId: pulumi.String("string"),
LocationDetails: &ailanguage.ModelTrainingDatasetLocationDetailsArgs{
Bucket: pulumi.String("string"),
LocationType: pulumi.String("string"),
Namespace: pulumi.String("string"),
ObjectNames: pulumi.StringArray{
pulumi.String("string"),
},
},
},
DefinedTags: pulumi.StringMap{
"string": pulumi.String("string"),
},
Description: pulumi.String("string"),
DisplayName: pulumi.String("string"),
FreeformTags: pulumi.StringMap{
"string": pulumi.String("string"),
},
TestStrategy: &ailanguage.ModelTestStrategyArgs{
StrategyType: pulumi.String("string"),
TestingDataset: &ailanguage.ModelTestStrategyTestingDatasetArgs{
DatasetType: pulumi.String("string"),
DatasetId: pulumi.String("string"),
LocationDetails: &ailanguage.ModelTestStrategyTestingDatasetLocationDetailsArgs{
Bucket: pulumi.String("string"),
LocationType: pulumi.String("string"),
Namespace: pulumi.String("string"),
ObjectNames: pulumi.StringArray{
pulumi.String("string"),
},
},
},
ValidationDataset: &ailanguage.ModelTestStrategyValidationDatasetArgs{
DatasetType: pulumi.String("string"),
DatasetId: pulumi.String("string"),
LocationDetails: &ailanguage.ModelTestStrategyValidationDatasetLocationDetailsArgs{
Bucket: pulumi.String("string"),
LocationType: pulumi.String("string"),
Namespace: pulumi.String("string"),
ObjectNames: pulumi.StringArray{
pulumi.String("string"),
},
},
},
},
})
var examplemodelResourceResourceFromAiLanguagemodel = new Model("examplemodelResourceResourceFromAiLanguagemodel", ModelArgs.builder()
.compartmentId("string")
.modelDetails(ModelModelDetailsArgs.builder()
.modelType("string")
.classificationMode(ModelModelDetailsClassificationModeArgs.builder()
.classificationMode("string")
.version("string")
.build())
.languageCode("string")
.version("string")
.build())
.projectId("string")
.trainingDataset(ModelTrainingDatasetArgs.builder()
.datasetType("string")
.datasetId("string")
.locationDetails(ModelTrainingDatasetLocationDetailsArgs.builder()
.bucket("string")
.locationType("string")
.namespace("string")
.objectNames("string")
.build())
.build())
.definedTags(Map.of("string", "string"))
.description("string")
.displayName("string")
.freeformTags(Map.of("string", "string"))
.testStrategy(ModelTestStrategyArgs.builder()
.strategyType("string")
.testingDataset(ModelTestStrategyTestingDatasetArgs.builder()
.datasetType("string")
.datasetId("string")
.locationDetails(ModelTestStrategyTestingDatasetLocationDetailsArgs.builder()
.bucket("string")
.locationType("string")
.namespace("string")
.objectNames("string")
.build())
.build())
.validationDataset(ModelTestStrategyValidationDatasetArgs.builder()
.datasetType("string")
.datasetId("string")
.locationDetails(ModelTestStrategyValidationDatasetLocationDetailsArgs.builder()
.bucket("string")
.locationType("string")
.namespace("string")
.objectNames("string")
.build())
.build())
.build())
.build());
examplemodel_resource_resource_from_ai_languagemodel = oci.ai_language.Model("examplemodelResourceResourceFromAiLanguagemodel",
compartment_id="string",
model_details=oci.ai_language.ModelModelDetailsArgs(
model_type="string",
classification_mode=oci.ai_language.ModelModelDetailsClassificationModeArgs(
classification_mode="string",
version="string",
),
language_code="string",
version="string",
),
project_id="string",
training_dataset=oci.ai_language.ModelTrainingDatasetArgs(
dataset_type="string",
dataset_id="string",
location_details=oci.ai_language.ModelTrainingDatasetLocationDetailsArgs(
bucket="string",
location_type="string",
namespace="string",
object_names=["string"],
),
),
defined_tags={
"string": "string",
},
description="string",
display_name="string",
freeform_tags={
"string": "string",
},
test_strategy=oci.ai_language.ModelTestStrategyArgs(
strategy_type="string",
testing_dataset=oci.ai_language.ModelTestStrategyTestingDatasetArgs(
dataset_type="string",
dataset_id="string",
location_details=oci.ai_language.ModelTestStrategyTestingDatasetLocationDetailsArgs(
bucket="string",
location_type="string",
namespace="string",
object_names=["string"],
),
),
validation_dataset=oci.ai_language.ModelTestStrategyValidationDatasetArgs(
dataset_type="string",
dataset_id="string",
location_details=oci.ai_language.ModelTestStrategyValidationDatasetLocationDetailsArgs(
bucket="string",
location_type="string",
namespace="string",
object_names=["string"],
),
),
))
const examplemodelResourceResourceFromAiLanguagemodel = new oci.ailanguage.Model("examplemodelResourceResourceFromAiLanguagemodel", {
compartmentId: "string",
modelDetails: {
modelType: "string",
classificationMode: {
classificationMode: "string",
version: "string",
},
languageCode: "string",
version: "string",
},
projectId: "string",
trainingDataset: {
datasetType: "string",
datasetId: "string",
locationDetails: {
bucket: "string",
locationType: "string",
namespace: "string",
objectNames: ["string"],
},
},
definedTags: {
string: "string",
},
description: "string",
displayName: "string",
freeformTags: {
string: "string",
},
testStrategy: {
strategyType: "string",
testingDataset: {
datasetType: "string",
datasetId: "string",
locationDetails: {
bucket: "string",
locationType: "string",
namespace: "string",
objectNames: ["string"],
},
},
validationDataset: {
datasetType: "string",
datasetId: "string",
locationDetails: {
bucket: "string",
locationType: "string",
namespace: "string",
objectNames: ["string"],
},
},
},
});
type: oci:AiLanguage:Model
properties:
compartmentId: string
definedTags:
string: string
description: string
displayName: string
freeformTags:
string: string
modelDetails:
classificationMode:
classificationMode: string
version: string
languageCode: string
modelType: string
version: string
projectId: string
testStrategy:
strategyType: string
testingDataset:
datasetId: string
datasetType: string
locationDetails:
bucket: string
locationType: string
namespace: string
objectNames:
- string
validationDataset:
datasetId: string
datasetType: string
locationDetails:
bucket: string
locationType: string
namespace: string
objectNames:
- string
trainingDataset:
datasetId: string
datasetType: string
locationDetails:
bucket: string
locationType: string
namespace: string
objectNames:
- string
Model Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
The Model resource accepts the following input properties:
- Compartment
Id string - (Updatable) The OCID for the models compartment.
- Model
Details ModelModel Details - Possible model types
- Project
Id string - The OCID of the project to associate with the model.
- Training
Dataset ModelTraining Dataset - Possible data set type
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- Description string
- (Updatable) A short description of the a model.
- Display
Name string - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- Dictionary<string, string>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- Test
Strategy ModelTest Strategy - Possible strategy as testing and validation(optional) dataset.
- Compartment
Id string - (Updatable) The OCID for the models compartment.
- Model
Details ModelModel Details Args - Possible model types
- Project
Id string - The OCID of the project to associate with the model.
- Training
Dataset ModelTraining Dataset Args - Possible data set type
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- Description string
- (Updatable) A short description of the a model.
- Display
Name string - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- map[string]string
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- Test
Strategy ModelTest Strategy Args - Possible strategy as testing and validation(optional) dataset.
- compartment
Id String - (Updatable) The OCID for the models compartment.
- model
Details ModelModel Details - Possible model types
- project
Id String - The OCID of the project to associate with the model.
- training
Dataset ModelTraining Dataset - Possible data set type
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description String
- (Updatable) A short description of the a model.
- display
Name String - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- Map<String,String>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- test
Strategy ModelTest Strategy - Possible strategy as testing and validation(optional) dataset.
- compartment
Id string - (Updatable) The OCID for the models compartment.
- model
Details ModelModel Details - Possible model types
- project
Id string - The OCID of the project to associate with the model.
- training
Dataset ModelTraining Dataset - Possible data set type
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description string
- (Updatable) A short description of the a model.
- display
Name string - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- {[key: string]: string}
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- test
Strategy ModelTest Strategy - Possible strategy as testing and validation(optional) dataset.
- compartment_
id str - (Updatable) The OCID for the models compartment.
- model_
details ailanguage.Model Model Details Args - Possible model types
- project_
id str - The OCID of the project to associate with the model.
- training_
dataset ailanguage.Model Training Dataset Args - Possible data set type
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description str
- (Updatable) A short description of the a model.
- display_
name str - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- Mapping[str, str]
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- test_
strategy ailanguage.Model Test Strategy Args - Possible strategy as testing and validation(optional) dataset.
- compartment
Id String - (Updatable) The OCID for the models compartment.
- model
Details Property Map - Possible model types
- project
Id String - The OCID of the project to associate with the model.
- training
Dataset Property Map - Possible data set type
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description String
- (Updatable) A short description of the a model.
- display
Name String - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- Map<String>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- test
Strategy Property Map - Possible strategy as testing and validation(optional) dataset.
Outputs
All input properties are implicitly available as output properties. Additionally, the Model resource produces the following output properties:
- Evaluation
Results List<ModelEvaluation Result> - model training results of different models
- Id string
- The provider-assigned unique ID for this managed resource.
- Lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- State string
- The state of the model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- Time
Created string - The time the the model was created. An RFC3339 formatted datetime string.
- Time
Updated string - The time the model was updated. An RFC3339 formatted datetime string.
- Version string
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- Evaluation
Results []ModelEvaluation Result - model training results of different models
- Id string
- The provider-assigned unique ID for this managed resource.
- Lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- State string
- The state of the model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- Time
Created string - The time the the model was created. An RFC3339 formatted datetime string.
- Time
Updated string - The time the model was updated. An RFC3339 formatted datetime string.
- Version string
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- evaluation
Results List<ModelEvaluation Result> - model training results of different models
- id String
- The provider-assigned unique ID for this managed resource.
- lifecycle
Details String - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- state String
- The state of the model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- time
Created String - The time the the model was created. An RFC3339 formatted datetime string.
- time
Updated String - The time the model was updated. An RFC3339 formatted datetime string.
- version String
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- evaluation
Results ModelEvaluation Result[] - model training results of different models
- id string
- The provider-assigned unique ID for this managed resource.
- lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- state string
- The state of the model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- time
Created string - The time the the model was created. An RFC3339 formatted datetime string.
- time
Updated string - The time the model was updated. An RFC3339 formatted datetime string.
- version string
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- evaluation_
results Sequence[ailanguage.Model Evaluation Result] - model training results of different models
- id str
- The provider-assigned unique ID for this managed resource.
- lifecycle_
details str - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- state str
- The state of the model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- time_
created str - The time the the model was created. An RFC3339 formatted datetime string.
- time_
updated str - The time the model was updated. An RFC3339 formatted datetime string.
- version str
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- evaluation
Results List<Property Map> - model training results of different models
- id String
- The provider-assigned unique ID for this managed resource.
- lifecycle
Details String - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- state String
- The state of the model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- time
Created String - The time the the model was created. An RFC3339 formatted datetime string.
- time
Updated String - The time the model was updated. An RFC3339 formatted datetime string.
- version String
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
Look up Existing Model Resource
Get an existing Model resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: ModelState, opts?: CustomResourceOptions): Model
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
compartment_id: Optional[str] = None,
defined_tags: Optional[Mapping[str, str]] = None,
description: Optional[str] = None,
display_name: Optional[str] = None,
evaluation_results: Optional[Sequence[_ailanguage.ModelEvaluationResultArgs]] = None,
freeform_tags: Optional[Mapping[str, str]] = None,
lifecycle_details: Optional[str] = None,
model_details: Optional[_ailanguage.ModelModelDetailsArgs] = None,
project_id: Optional[str] = None,
state: Optional[str] = None,
system_tags: Optional[Mapping[str, str]] = None,
test_strategy: Optional[_ailanguage.ModelTestStrategyArgs] = None,
time_created: Optional[str] = None,
time_updated: Optional[str] = None,
training_dataset: Optional[_ailanguage.ModelTrainingDatasetArgs] = None,
version: Optional[str] = None) -> Model
func GetModel(ctx *Context, name string, id IDInput, state *ModelState, opts ...ResourceOption) (*Model, error)
public static Model Get(string name, Input<string> id, ModelState? state, CustomResourceOptions? opts = null)
public static Model get(String name, Output<String> id, ModelState state, CustomResourceOptions options)
Resource lookup is not supported in YAML
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Compartment
Id string - (Updatable) The OCID for the models compartment.
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- Description string
- (Updatable) A short description of the a model.
- Display
Name string - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- Evaluation
Results List<ModelEvaluation Result> - model training results of different models
- Dictionary<string, string>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- Lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- Model
Details ModelModel Details - Possible model types
- Project
Id string - The OCID of the project to associate with the model.
- State string
- The state of the model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- Test
Strategy ModelTest Strategy - Possible strategy as testing and validation(optional) dataset.
- Time
Created string - The time the the model was created. An RFC3339 formatted datetime string.
- Time
Updated string - The time the model was updated. An RFC3339 formatted datetime string.
- Training
Dataset ModelTraining Dataset - Possible data set type
- Version string
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- Compartment
Id string - (Updatable) The OCID for the models compartment.
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- Description string
- (Updatable) A short description of the a model.
- Display
Name string - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- Evaluation
Results []ModelEvaluation Result Args - model training results of different models
- map[string]string
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- Lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- Model
Details ModelModel Details Args - Possible model types
- Project
Id string - The OCID of the project to associate with the model.
- State string
- The state of the model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- Test
Strategy ModelTest Strategy Args - Possible strategy as testing and validation(optional) dataset.
- Time
Created string - The time the the model was created. An RFC3339 formatted datetime string.
- Time
Updated string - The time the model was updated. An RFC3339 formatted datetime string.
- Training
Dataset ModelTraining Dataset Args - Possible data set type
- Version string
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- compartment
Id String - (Updatable) The OCID for the models compartment.
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description String
- (Updatable) A short description of the a model.
- display
Name String - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- evaluation
Results List<ModelEvaluation Result> - model training results of different models
- Map<String,String>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- lifecycle
Details String - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- model
Details ModelModel Details - Possible model types
- project
Id String - The OCID of the project to associate with the model.
- state String
- The state of the model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Strategy ModelTest Strategy - Possible strategy as testing and validation(optional) dataset.
- time
Created String - The time the the model was created. An RFC3339 formatted datetime string.
- time
Updated String - The time the model was updated. An RFC3339 formatted datetime string.
- training
Dataset ModelTraining Dataset - Possible data set type
- version String
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- compartment
Id string - (Updatable) The OCID for the models compartment.
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description string
- (Updatable) A short description of the a model.
- display
Name string - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- evaluation
Results ModelEvaluation Result[] - model training results of different models
- {[key: string]: string}
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- model
Details ModelModel Details - Possible model types
- project
Id string - The OCID of the project to associate with the model.
- state string
- The state of the model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Strategy ModelTest Strategy - Possible strategy as testing and validation(optional) dataset.
- time
Created string - The time the the model was created. An RFC3339 formatted datetime string.
- time
Updated string - The time the model was updated. An RFC3339 formatted datetime string.
- training
Dataset ModelTraining Dataset - Possible data set type
- version string
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- compartment_
id str - (Updatable) The OCID for the models compartment.
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description str
- (Updatable) A short description of the a model.
- display_
name str - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- evaluation_
results Sequence[ailanguage.Model Evaluation Result Args] - model training results of different models
- Mapping[str, str]
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- lifecycle_
details str - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- model_
details ailanguage.Model Model Details Args - Possible model types
- project_
id str - The OCID of the project to associate with the model.
- state str
- The state of the model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test_
strategy ailanguage.Model Test Strategy Args - Possible strategy as testing and validation(optional) dataset.
- time_
created str - The time the the model was created. An RFC3339 formatted datetime string.
- time_
updated str - The time the model was updated. An RFC3339 formatted datetime string.
- training_
dataset ailanguage.Model Training Dataset Args - Possible data set type
- version str
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- compartment
Id String - (Updatable) The OCID for the models compartment.
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description String
- (Updatable) A short description of the a model.
- display
Name String - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- evaluation
Results List<Property Map> - model training results of different models
- Map<String>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- lifecycle
Details String - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- model
Details Property Map - Possible model types
- project
Id String - The OCID of the project to associate with the model.
- state String
- The state of the model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Strategy Property Map - Possible strategy as testing and validation(optional) dataset.
- time
Created String - The time the the model was created. An RFC3339 formatted datetime string.
- time
Updated String - The time the model was updated. An RFC3339 formatted datetime string.
- training
Dataset Property Map - Possible data set type
- version String
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
Supporting Types
ModelEvaluationResult, ModelEvaluationResultArgs
- Class
Metrics List<ModelEvaluation Result Class Metric> - List of text classification metrics
- Confusion
Matrix string - class level confusion matrix
- Entity
Metrics List<ModelEvaluation Result Entity Metric> - List of entity metrics
- Labels List<string>
- labels
- Metrics
List<Model
Evaluation Result Metric> - Model level named entity recognition metrics
- Model
Type string - Model type
- Class
Metrics []ModelEvaluation Result Class Metric - List of text classification metrics
- Confusion
Matrix string - class level confusion matrix
- Entity
Metrics []ModelEvaluation Result Entity Metric - List of entity metrics
- Labels []string
- labels
- Metrics
[]Model
Evaluation Result Metric - Model level named entity recognition metrics
- Model
Type string - Model type
- class
Metrics List<ModelEvaluation Result Class Metric> - List of text classification metrics
- confusion
Matrix String - class level confusion matrix
- entity
Metrics List<ModelEvaluation Result Entity Metric> - List of entity metrics
- labels List<String>
- labels
- metrics
List<Model
Evaluation Result Metric> - Model level named entity recognition metrics
- model
Type String - Model type
- class
Metrics ModelEvaluation Result Class Metric[] - List of text classification metrics
- confusion
Matrix string - class level confusion matrix
- entity
Metrics ModelEvaluation Result Entity Metric[] - List of entity metrics
- labels string[]
- labels
- metrics
Model
Evaluation Result Metric[] - Model level named entity recognition metrics
- model
Type string - Model type
- class_
metrics Sequence[ailanguage.Model Evaluation Result Class Metric] - List of text classification metrics
- confusion_
matrix str - class level confusion matrix
- entity_
metrics Sequence[ailanguage.Model Evaluation Result Entity Metric] - List of entity metrics
- labels Sequence[str]
- labels
- metrics
Sequence[ailanguage.
Model Evaluation Result Metric] - Model level named entity recognition metrics
- model_
type str - Model type
- class
Metrics List<Property Map> - List of text classification metrics
- confusion
Matrix String - class level confusion matrix
- entity
Metrics List<Property Map> - List of entity metrics
- labels List<String>
- labels
- metrics List<Property Map>
- Model level named entity recognition metrics
- model
Type String - Model type
ModelEvaluationResultClassMetric, ModelEvaluationResultClassMetricArgs
- F1 double
- F1-score, is a measure of a model’s accuracy on a dataset
- Label string
- Entity label
- Precision double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Recall double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Support double
- number of samples in the test set
- F1 float64
- F1-score, is a measure of a model’s accuracy on a dataset
- Label string
- Entity label
- Precision float64
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Recall float64
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Support float64
- number of samples in the test set
- f1 Double
- F1-score, is a measure of a model’s accuracy on a dataset
- label String
- Entity label
- precision Double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall Double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- support Double
- number of samples in the test set
- f1 number
- F1-score, is a measure of a model’s accuracy on a dataset
- label string
- Entity label
- precision number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- support number
- number of samples in the test set
- f1 float
- F1-score, is a measure of a model’s accuracy on a dataset
- label str
- Entity label
- precision float
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall float
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- support float
- number of samples in the test set
- f1 Number
- F1-score, is a measure of a model’s accuracy on a dataset
- label String
- Entity label
- precision Number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall Number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- support Number
- number of samples in the test set
ModelEvaluationResultEntityMetric, ModelEvaluationResultEntityMetricArgs
- F1 double
- F1-score, is a measure of a model’s accuracy on a dataset
- Label string
- Entity label
- Precision double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Recall double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- F1 float64
- F1-score, is a measure of a model’s accuracy on a dataset
- Label string
- Entity label
- Precision float64
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Recall float64
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- f1 Double
- F1-score, is a measure of a model’s accuracy on a dataset
- label String
- Entity label
- precision Double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall Double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- f1 number
- F1-score, is a measure of a model’s accuracy on a dataset
- label string
- Entity label
- precision number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- f1 float
- F1-score, is a measure of a model’s accuracy on a dataset
- label str
- Entity label
- precision float
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall float
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- f1 Number
- F1-score, is a measure of a model’s accuracy on a dataset
- label String
- Entity label
- precision Number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall Number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
ModelEvaluationResultMetric, ModelEvaluationResultMetricArgs
- Accuracy double
- The fraction of the labels that were correctly recognised .
- Macro
F1 double - F1-score, is a measure of a model’s accuracy on a dataset
- Macro
Precision double - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Macro
Recall double - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Micro
F1 double - F1-score, is a measure of a model’s accuracy on a dataset
- Micro
Precision double - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Micro
Recall double - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Weighted
F1 double - F1-score, is a measure of a model’s accuracy on a dataset
- Weighted
Precision double - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Weighted
Recall double - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Accuracy float64
- The fraction of the labels that were correctly recognised .
- Macro
F1 float64 - F1-score, is a measure of a model’s accuracy on a dataset
- Macro
Precision float64 - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Macro
Recall float64 - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Micro
F1 float64 - F1-score, is a measure of a model’s accuracy on a dataset
- Micro
Precision float64 - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Micro
Recall float64 - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Weighted
F1 float64 - F1-score, is a measure of a model’s accuracy on a dataset
- Weighted
Precision float64 - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Weighted
Recall float64 - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- accuracy Double
- The fraction of the labels that were correctly recognised .
- macro
F1 Double - F1-score, is a measure of a model’s accuracy on a dataset
- macro
Precision Double - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- macro
Recall Double - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- micro
F1 Double - F1-score, is a measure of a model’s accuracy on a dataset
- micro
Precision Double - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- micro
Recall Double - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- weighted
F1 Double - F1-score, is a measure of a model’s accuracy on a dataset
- weighted
Precision Double - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- weighted
Recall Double - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- accuracy number
- The fraction of the labels that were correctly recognised .
- macro
F1 number - F1-score, is a measure of a model’s accuracy on a dataset
- macro
Precision number - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- macro
Recall number - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- micro
F1 number - F1-score, is a measure of a model’s accuracy on a dataset
- micro
Precision number - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- micro
Recall number - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- weighted
F1 number - F1-score, is a measure of a model’s accuracy on a dataset
- weighted
Precision number - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- weighted
Recall number - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- accuracy float
- The fraction of the labels that were correctly recognised .
- macro_
f1 float - F1-score, is a measure of a model’s accuracy on a dataset
- macro_
precision float - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- macro_
recall float - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- micro_
f1 float - F1-score, is a measure of a model’s accuracy on a dataset
- micro_
precision float - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- micro_
recall float - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- weighted_
f1 float - F1-score, is a measure of a model’s accuracy on a dataset
- weighted_
precision float - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- weighted_
recall float - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- accuracy Number
- The fraction of the labels that were correctly recognised .
- macro
F1 Number - F1-score, is a measure of a model’s accuracy on a dataset
- macro
Precision Number - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- macro
Recall Number - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- micro
F1 Number - F1-score, is a measure of a model’s accuracy on a dataset
- micro
Precision Number - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- micro
Recall Number - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- weighted
F1 Number - F1-score, is a measure of a model’s accuracy on a dataset
- weighted
Precision Number - Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- weighted
Recall Number - Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
ModelModelDetails, ModelModelDetailsArgs
- Model
Type string - Model type
- Classification
Mode ModelModel Details Classification Mode - possible text classification modes
- Language
Code string - supported language default value is en
- Version string
- Optional pre trained model version. if nothing specified latest pre trained model will be used. Supported versions can be found at /modelTypes/{modelType}
- Model
Type string - Model type
- Classification
Mode ModelModel Details Classification Mode - possible text classification modes
- Language
Code string - supported language default value is en
- Version string
- Optional pre trained model version. if nothing specified latest pre trained model will be used. Supported versions can be found at /modelTypes/{modelType}
- model
Type String - Model type
- classification
Mode ModelModel Details Classification Mode - possible text classification modes
- language
Code String - supported language default value is en
- version String
- Optional pre trained model version. if nothing specified latest pre trained model will be used. Supported versions can be found at /modelTypes/{modelType}
- model
Type string - Model type
- classification
Mode ModelModel Details Classification Mode - possible text classification modes
- language
Code string - supported language default value is en
- version string
- Optional pre trained model version. if nothing specified latest pre trained model will be used. Supported versions can be found at /modelTypes/{modelType}
- model_
type str - Model type
- classification_
mode ailanguage.Model Model Details Classification Mode - possible text classification modes
- language_
code str - supported language default value is en
- version str
- Optional pre trained model version. if nothing specified latest pre trained model will be used. Supported versions can be found at /modelTypes/{modelType}
- model
Type String - Model type
- classification
Mode Property Map - possible text classification modes
- language
Code String - supported language default value is en
- version String
- Optional pre trained model version. if nothing specified latest pre trained model will be used. Supported versions can be found at /modelTypes/{modelType}
ModelModelDetailsClassificationMode, ModelModelDetailsClassificationModeArgs
- Classification
Mode string - classification Modes
- Version string
- Optional if nothing specified latest base model will be used for training. Supported versions can be found at /modelTypes/{modelType}
- Classification
Mode string - classification Modes
- Version string
- Optional if nothing specified latest base model will be used for training. Supported versions can be found at /modelTypes/{modelType}
- classification
Mode String - classification Modes
- version String
- Optional if nothing specified latest base model will be used for training. Supported versions can be found at /modelTypes/{modelType}
- classification
Mode string - classification Modes
- version string
- Optional if nothing specified latest base model will be used for training. Supported versions can be found at /modelTypes/{modelType}
- classification_
mode str - classification Modes
- version str
- Optional if nothing specified latest base model will be used for training. Supported versions can be found at /modelTypes/{modelType}
- classification
Mode String - classification Modes
- version String
- Optional if nothing specified latest base model will be used for training. Supported versions can be found at /modelTypes/{modelType}
ModelTestStrategy, ModelTestStrategyArgs
- Strategy
Type string - This information will define the test strategy different datasets for test and validation(optional) dataset.
- Testing
Dataset ModelTest Strategy Testing Dataset - Possible data set type
- Validation
Dataset ModelTest Strategy Validation Dataset - Possible data set type
- Strategy
Type string - This information will define the test strategy different datasets for test and validation(optional) dataset.
- Testing
Dataset ModelTest Strategy Testing Dataset - Possible data set type
- Validation
Dataset ModelTest Strategy Validation Dataset - Possible data set type
- strategy
Type String - This information will define the test strategy different datasets for test and validation(optional) dataset.
- testing
Dataset ModelTest Strategy Testing Dataset - Possible data set type
- validation
Dataset ModelTest Strategy Validation Dataset - Possible data set type
- strategy
Type string - This information will define the test strategy different datasets for test and validation(optional) dataset.
- testing
Dataset ModelTest Strategy Testing Dataset - Possible data set type
- validation
Dataset ModelTest Strategy Validation Dataset - Possible data set type
- strategy_
type str - This information will define the test strategy different datasets for test and validation(optional) dataset.
- testing_
dataset ailanguage.Model Test Strategy Testing Dataset - Possible data set type
- validation_
dataset ailanguage.Model Test Strategy Validation Dataset - Possible data set type
- strategy
Type String - This information will define the test strategy different datasets for test and validation(optional) dataset.
- testing
Dataset Property Map - Possible data set type
- validation
Dataset Property Map - Possible data set type
ModelTestStrategyTestingDataset, ModelTestStrategyTestingDatasetArgs
- Dataset
Type string - Possible data sets
- Dataset
Id string - Data Science Labelling Service OCID
- Location
Details ModelTest Strategy Testing Dataset Location Details - Possible object storage location types
- Dataset
Type string - Possible data sets
- Dataset
Id string - Data Science Labelling Service OCID
- Location
Details ModelTest Strategy Testing Dataset Location Details - Possible object storage location types
- dataset
Type String - Possible data sets
- dataset
Id String - Data Science Labelling Service OCID
- location
Details ModelTest Strategy Testing Dataset Location Details - Possible object storage location types
- dataset
Type string - Possible data sets
- dataset
Id string - Data Science Labelling Service OCID
- location
Details ModelTest Strategy Testing Dataset Location Details - Possible object storage location types
- dataset_
type str - Possible data sets
- dataset_
id str - Data Science Labelling Service OCID
- location_
details ailanguage.Model Test Strategy Testing Dataset Location Details - Possible object storage location types
- dataset
Type String - Possible data sets
- dataset
Id String - Data Science Labelling Service OCID
- location
Details Property Map - Possible object storage location types
ModelTestStrategyTestingDatasetLocationDetails, ModelTestStrategyTestingDatasetLocationDetailsArgs
- Bucket string
- Object storage bucket name
- Location
Type string - Possible object storage location types
- Namespace string
- Object storage namespace
- Object
Names List<string> - Array of files which need to be processed in the bucket
- Bucket string
- Object storage bucket name
- Location
Type string - Possible object storage location types
- Namespace string
- Object storage namespace
- Object
Names []string - Array of files which need to be processed in the bucket
- bucket String
- Object storage bucket name
- location
Type String - Possible object storage location types
- namespace String
- Object storage namespace
- object
Names List<String> - Array of files which need to be processed in the bucket
- bucket string
- Object storage bucket name
- location
Type string - Possible object storage location types
- namespace string
- Object storage namespace
- object
Names string[] - Array of files which need to be processed in the bucket
- bucket str
- Object storage bucket name
- location_
type str - Possible object storage location types
- namespace str
- Object storage namespace
- object_
names Sequence[str] - Array of files which need to be processed in the bucket
- bucket String
- Object storage bucket name
- location
Type String - Possible object storage location types
- namespace String
- Object storage namespace
- object
Names List<String> - Array of files which need to be processed in the bucket
ModelTestStrategyValidationDataset, ModelTestStrategyValidationDatasetArgs
- Dataset
Type string - Possible data sets
- Dataset
Id string - Data Science Labelling Service OCID
- Location
Details ModelTest Strategy Validation Dataset Location Details - Possible object storage location types
- Dataset
Type string - Possible data sets
- Dataset
Id string - Data Science Labelling Service OCID
- Location
Details ModelTest Strategy Validation Dataset Location Details - Possible object storage location types
- dataset
Type String - Possible data sets
- dataset
Id String - Data Science Labelling Service OCID
- location
Details ModelTest Strategy Validation Dataset Location Details - Possible object storage location types
- dataset
Type string - Possible data sets
- dataset
Id string - Data Science Labelling Service OCID
- location
Details ModelTest Strategy Validation Dataset Location Details - Possible object storage location types
- dataset_
type str - Possible data sets
- dataset_
id str - Data Science Labelling Service OCID
- location_
details ailanguage.Model Test Strategy Validation Dataset Location Details - Possible object storage location types
- dataset
Type String - Possible data sets
- dataset
Id String - Data Science Labelling Service OCID
- location
Details Property Map - Possible object storage location types
ModelTestStrategyValidationDatasetLocationDetails, ModelTestStrategyValidationDatasetLocationDetailsArgs
- Bucket string
- Object storage bucket name
- Location
Type string - Possible object storage location types
- Namespace string
- Object storage namespace
- Object
Names List<string> - Array of files which need to be processed in the bucket
- Bucket string
- Object storage bucket name
- Location
Type string - Possible object storage location types
- Namespace string
- Object storage namespace
- Object
Names []string - Array of files which need to be processed in the bucket
- bucket String
- Object storage bucket name
- location
Type String - Possible object storage location types
- namespace String
- Object storage namespace
- object
Names List<String> - Array of files which need to be processed in the bucket
- bucket string
- Object storage bucket name
- location
Type string - Possible object storage location types
- namespace string
- Object storage namespace
- object
Names string[] - Array of files which need to be processed in the bucket
- bucket str
- Object storage bucket name
- location_
type str - Possible object storage location types
- namespace str
- Object storage namespace
- object_
names Sequence[str] - Array of files which need to be processed in the bucket
- bucket String
- Object storage bucket name
- location
Type String - Possible object storage location types
- namespace String
- Object storage namespace
- object
Names List<String> - Array of files which need to be processed in the bucket
ModelTrainingDataset, ModelTrainingDatasetArgs
- Dataset
Type string - Possible data sets
- Dataset
Id string - Data Science Labelling Service OCID
- Location
Details ModelTraining Dataset Location Details - Possible object storage location types
- Dataset
Type string - Possible data sets
- Dataset
Id string - Data Science Labelling Service OCID
- Location
Details ModelTraining Dataset Location Details - Possible object storage location types
- dataset
Type String - Possible data sets
- dataset
Id String - Data Science Labelling Service OCID
- location
Details ModelTraining Dataset Location Details - Possible object storage location types
- dataset
Type string - Possible data sets
- dataset
Id string - Data Science Labelling Service OCID
- location
Details ModelTraining Dataset Location Details - Possible object storage location types
- dataset_
type str - Possible data sets
- dataset_
id str - Data Science Labelling Service OCID
- location_
details ailanguage.Model Training Dataset Location Details - Possible object storage location types
- dataset
Type String - Possible data sets
- dataset
Id String - Data Science Labelling Service OCID
- location
Details Property Map - Possible object storage location types
ModelTrainingDatasetLocationDetails, ModelTrainingDatasetLocationDetailsArgs
- Bucket string
- Object storage bucket name
- Location
Type string - Possible object storage location types
- Namespace string
- Object storage namespace
- Object
Names List<string> Array of files which need to be processed in the bucket
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- Bucket string
- Object storage bucket name
- Location
Type string - Possible object storage location types
- Namespace string
- Object storage namespace
- Object
Names []string Array of files which need to be processed in the bucket
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- bucket String
- Object storage bucket name
- location
Type String - Possible object storage location types
- namespace String
- Object storage namespace
- object
Names List<String> Array of files which need to be processed in the bucket
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- bucket string
- Object storage bucket name
- location
Type string - Possible object storage location types
- namespace string
- Object storage namespace
- object
Names string[] Array of files which need to be processed in the bucket
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- bucket str
- Object storage bucket name
- location_
type str - Possible object storage location types
- namespace str
- Object storage namespace
- object_
names Sequence[str] Array of files which need to be processed in the bucket
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- bucket String
- Object storage bucket name
- location
Type String - Possible object storage location types
- namespace String
- Object storage namespace
- object
Names List<String> Array of files which need to be processed in the bucket
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
Import
Models can be imported using the id
, e.g.
$ pulumi import oci:AiLanguage/model:Model test_model "id"
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
oci
Terraform Provider.