Oracle Cloud Infrastructure v2.11.0 published on Thursday, Sep 19, 2024 by Pulumi
oci.AiVision.getModel
Explore with Pulumi AI
This data source provides details about a specific Model resource in Oracle Cloud Infrastructure Ai Vision service.
Gets a Model by identifier
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = oci.AiVision.getModel({
modelId: testModelOciAiVisionModel.id,
});
import pulumi
import pulumi_oci as oci
test_model = oci.AiVision.get_model(model_id=test_model_oci_ai_vision_model["id"])
package main
import (
"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/AiVision"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := AiVision.GetModel(ctx, &aivision.GetModelArgs{
ModelId: testModelOciAiVisionModel.Id,
}, nil)
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() =>
{
var testModel = Oci.AiVision.GetModel.Invoke(new()
{
ModelId = testModelOciAiVisionModel.Id,
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiVision.AiVisionFunctions;
import com.pulumi.oci.AiVision.inputs.GetModelArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var testModel = AiVisionFunctions.getModel(GetModelArgs.builder()
.modelId(testModelOciAiVisionModel.id())
.build());
}
}
variables:
testModel:
fn::invoke:
Function: oci:AiVision:getModel
Arguments:
modelId: ${testModelOciAiVisionModel.id}
Using getModel
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getModel(args: GetModelArgs, opts?: InvokeOptions): Promise<GetModelResult>
function getModelOutput(args: GetModelOutputArgs, opts?: InvokeOptions): Output<GetModelResult>
def get_model(model_id: Optional[str] = None,
opts: Optional[InvokeOptions] = None) -> GetModelResult
def get_model_output(model_id: Optional[pulumi.Input[str]] = None,
opts: Optional[InvokeOptions] = None) -> Output[GetModelResult]
func GetModel(ctx *Context, args *GetModelArgs, opts ...InvokeOption) (*GetModelResult, error)
func GetModelOutput(ctx *Context, args *GetModelOutputArgs, opts ...InvokeOption) GetModelResultOutput
> Note: This function is named GetModel
in the Go SDK.
public static class GetModel
{
public static Task<GetModelResult> InvokeAsync(GetModelArgs args, InvokeOptions? opts = null)
public static Output<GetModelResult> Invoke(GetModelInvokeArgs args, InvokeOptions? opts = null)
}
public static CompletableFuture<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
// Output-based functions aren't available in Java yet
fn::invoke:
function: oci:AiVision/getModel:getModel
arguments:
# arguments dictionary
The following arguments are supported:
- Model
Id string - unique Model identifier
- Model
Id string - unique Model identifier
- model
Id String - unique Model identifier
- model
Id string - unique Model identifier
- model_
id str - unique Model identifier
- model
Id String - unique Model identifier
getModel Result
The following output properties are available:
- Average
Precision double - Average precision of the trained model
- Compartment
Id string - Compartment Identifier
- Confidence
Threshold double - Confidence ratio of the calculation
- Dictionary<string, string>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- Description string
- A short description of the model.
- Display
Name string - Model Identifier, can be renamed
- Dictionary<string, string>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- Id string
- Unique identifier that is immutable on creation
- Is
Quick boolMode - If It's true, Training is set for recommended epochs needed for quick training.
- Lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- Max
Training doubleDuration In Hours - The maximum duration in hours for which the training will run.
- Metrics string
- Complete Training Metrics for successful trained model
- Model
Id string - Model
Type string - Type of the Model.
- Model
Version string - The version of the model
- Precision double
- Precision of the trained model
- Project
Id string - The OCID of the project to associate with the model.
- Recall double
- Recall of the trained model
- State string
- The current state of the Model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- Test
Image intCount - Total number of testing Images
- Testing
Datasets List<GetModel Testing Dataset> - The base entity for a Dataset, which is the input for Model creation.
- Time
Created string - The time the Model was created. An RFC3339 formatted datetime string
- Time
Updated string - The time the Model was updated. An RFC3339 formatted datetime string
- Total
Image intCount - Total number of training Images
- Trained
Duration doubleIn Hours - Total hours actually used for training
- Training
Datasets List<GetModel Training Dataset> - The base entity for a Dataset, which is the input for Model creation.
- Validation
Datasets List<GetModel Validation Dataset> - The base entity for a Dataset, which is the input for Model creation.
- Average
Precision float64 - Average precision of the trained model
- Compartment
Id string - Compartment Identifier
- Confidence
Threshold float64 - Confidence ratio of the calculation
- map[string]string
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- Description string
- A short description of the model.
- Display
Name string - Model Identifier, can be renamed
- map[string]string
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- Id string
- Unique identifier that is immutable on creation
- Is
Quick boolMode - If It's true, Training is set for recommended epochs needed for quick training.
- Lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- Max
Training float64Duration In Hours - The maximum duration in hours for which the training will run.
- Metrics string
- Complete Training Metrics for successful trained model
- Model
Id string - Model
Type string - Type of the Model.
- Model
Version string - The version of the model
- Precision float64
- Precision of the trained model
- Project
Id string - The OCID of the project to associate with the model.
- Recall float64
- Recall of the trained model
- State string
- The current state of the Model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- Test
Image intCount - Total number of testing Images
- Testing
Datasets []GetModel Testing Dataset - The base entity for a Dataset, which is the input for Model creation.
- Time
Created string - The time the Model was created. An RFC3339 formatted datetime string
- Time
Updated string - The time the Model was updated. An RFC3339 formatted datetime string
- Total
Image intCount - Total number of training Images
- Trained
Duration float64In Hours - Total hours actually used for training
- Training
Datasets []GetModel Training Dataset - The base entity for a Dataset, which is the input for Model creation.
- Validation
Datasets []GetModel Validation Dataset - The base entity for a Dataset, which is the input for Model creation.
- average
Precision Double - Average precision of the trained model
- compartment
Id String - Compartment Identifier
- confidence
Threshold Double - Confidence ratio of the calculation
- Map<String,String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description String
- A short description of the model.
- display
Name String - Model Identifier, can be renamed
- Map<String,String>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id String
- Unique identifier that is immutable on creation
- is
Quick BooleanMode - If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle
Details String - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max
Training DoubleDuration In Hours - The maximum duration in hours for which the training will run.
- metrics String
- Complete Training Metrics for successful trained model
- model
Id String - model
Type String - Type of the Model.
- model
Version String - The version of the model
- precision Double
- Precision of the trained model
- project
Id String - The OCID of the project to associate with the model.
- recall Double
- Recall of the trained model
- state String
- The current state of the Model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Image IntegerCount - Total number of testing Images
- testing
Datasets List<GetModel Testing Dataset> - The base entity for a Dataset, which is the input for Model creation.
- time
Created String - The time the Model was created. An RFC3339 formatted datetime string
- time
Updated String - The time the Model was updated. An RFC3339 formatted datetime string
- total
Image IntegerCount - Total number of training Images
- trained
Duration DoubleIn Hours - Total hours actually used for training
- training
Datasets List<GetModel Training Dataset> - The base entity for a Dataset, which is the input for Model creation.
- validation
Datasets List<GetModel Validation Dataset> - The base entity for a Dataset, which is the input for Model creation.
- average
Precision number - Average precision of the trained model
- compartment
Id string - Compartment Identifier
- confidence
Threshold number - Confidence ratio of the calculation
- {[key: string]: string}
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description string
- A short description of the model.
- display
Name string - Model Identifier, can be renamed
- {[key: string]: string}
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id string
- Unique identifier that is immutable on creation
- is
Quick booleanMode - If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max
Training numberDuration In Hours - The maximum duration in hours for which the training will run.
- metrics string
- Complete Training Metrics for successful trained model
- model
Id string - model
Type string - Type of the Model.
- model
Version string - The version of the model
- precision number
- Precision of the trained model
- project
Id string - The OCID of the project to associate with the model.
- recall number
- Recall of the trained model
- state string
- The current state of the Model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Image numberCount - Total number of testing Images
- testing
Datasets GetModel Testing Dataset[] - The base entity for a Dataset, which is the input for Model creation.
- time
Created string - The time the Model was created. An RFC3339 formatted datetime string
- time
Updated string - The time the Model was updated. An RFC3339 formatted datetime string
- total
Image numberCount - Total number of training Images
- trained
Duration numberIn Hours - Total hours actually used for training
- training
Datasets GetModel Training Dataset[] - The base entity for a Dataset, which is the input for Model creation.
- validation
Datasets GetModel Validation Dataset[] - The base entity for a Dataset, which is the input for Model creation.
- average_
precision float - Average precision of the trained model
- compartment_
id str - Compartment Identifier
- confidence_
threshold float - Confidence ratio of the calculation
- Mapping[str, str]
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description str
- A short description of the model.
- display_
name str - Model Identifier, can be renamed
- Mapping[str, str]
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id str
- Unique identifier that is immutable on creation
- is_
quick_ boolmode - If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle_
details str - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max_
training_ floatduration_ in_ hours - The maximum duration in hours for which the training will run.
- metrics str
- Complete Training Metrics for successful trained model
- model_
id str - model_
type str - Type of the Model.
- model_
version str - The version of the model
- precision float
- Precision of the trained model
- project_
id str - The OCID of the project to associate with the model.
- recall float
- Recall of the trained model
- state str
- The current state of the Model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test_
image_ intcount - Total number of testing Images
- testing_
datasets Sequence[aivision.Get Model Testing Dataset] - The base entity for a Dataset, which is the input for Model creation.
- time_
created str - The time the Model was created. An RFC3339 formatted datetime string
- time_
updated str - The time the Model was updated. An RFC3339 formatted datetime string
- total_
image_ intcount - Total number of training Images
- trained_
duration_ floatin_ hours - Total hours actually used for training
- training_
datasets Sequence[aivision.Get Model Training Dataset] - The base entity for a Dataset, which is the input for Model creation.
- validation_
datasets Sequence[aivision.Get Model Validation Dataset] - The base entity for a Dataset, which is the input for Model creation.
- average
Precision Number - Average precision of the trained model
- compartment
Id String - Compartment Identifier
- confidence
Threshold Number - Confidence ratio of the calculation
- Map<String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example:
{"foo-namespace.bar-key": "value"}
- description String
- A short description of the model.
- display
Name String - Model Identifier, can be renamed
- Map<String>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example:
{"bar-key": "value"}
- id String
- Unique identifier that is immutable on creation
- is
Quick BooleanMode - If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle
Details String - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max
Training NumberDuration In Hours - The maximum duration in hours for which the training will run.
- metrics String
- Complete Training Metrics for successful trained model
- model
Id String - model
Type String - Type of the Model.
- model
Version String - The version of the model
- precision Number
- Precision of the trained model
- project
Id String - The OCID of the project to associate with the model.
- recall Number
- Recall of the trained model
- state String
- The current state of the Model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example:
{"orcl-cloud.free-tier-retained": "true"}
- test
Image NumberCount - Total number of testing Images
- testing
Datasets List<Property Map> - The base entity for a Dataset, which is the input for Model creation.
- time
Created String - The time the Model was created. An RFC3339 formatted datetime string
- time
Updated String - The time the Model was updated. An RFC3339 formatted datetime string
- total
Image NumberCount - Total number of training Images
- trained
Duration NumberIn Hours - Total hours actually used for training
- training
Datasets List<Property Map> - The base entity for a Dataset, which is the input for Model creation.
- validation
Datasets List<Property Map> - The base entity for a Dataset, which is the input for Model creation.
Supporting Types
GetModelTestingDataset
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id string - The OCID of the Data Science Labeling Dataset.
- dataset
Type string - Type of the Dataset.
- namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_
id str - The OCID of the Data Science Labeling Dataset.
- dataset_
type str - Type of the Dataset.
- namespace_
name str - The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
GetModelTrainingDataset
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id string - The OCID of the Data Science Labeling Dataset.
- dataset
Type string - Type of the Dataset.
- namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_
id str - The OCID of the Data Science Labeling Dataset.
- dataset_
type str - Type of the Dataset.
- namespace_
name str - The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
GetModelValidationDataset
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- Dataset
Id string - The OCID of the Data Science Labeling Dataset.
- Dataset
Type string - Type of the Dataset.
- Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id string - The OCID of the Data Science Labeling Dataset.
- dataset
Type string - Type of the Dataset.
- namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_
id str - The OCID of the Data Science Labeling Dataset.
- dataset_
type str - Type of the Dataset.
- namespace_
name str - The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- dataset
Id String - The OCID of the Data Science Labeling Dataset.
- dataset
Type String - Type of the Dataset.
- namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
oci
Terraform Provider.