oci.DataScience.Model
Explore with Pulumi AI
This resource provides the Model resource in Oracle Cloud Infrastructure Data Science service.
Creates a new model.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = new oci.datascience.Model("test_model", {
compartmentId: compartmentId,
projectId: testProject.id,
customMetadataLists: [{
category: modelCustomMetadataListCategory,
description: modelCustomMetadataListDescription,
key: modelCustomMetadataListKey,
value: modelCustomMetadataListValue,
}],
definedMetadataLists: [{
category: modelDefinedMetadataListCategory,
description: modelDefinedMetadataListDescription,
key: modelDefinedMetadataListKey,
value: modelDefinedMetadataListValue,
}],
definedTags: {
"Operations.CostCenter": "42",
},
description: modelDescription,
displayName: modelDisplayName,
freeformTags: {
Department: "Finance",
},
inputSchema: modelInputSchema,
outputSchema: modelOutputSchema,
});
import pulumi
import pulumi_oci as oci
test_model = oci.data_science.Model("test_model",
compartment_id=compartment_id,
project_id=test_project["id"],
custom_metadata_lists=[{
"category": model_custom_metadata_list_category,
"description": model_custom_metadata_list_description,
"key": model_custom_metadata_list_key,
"value": model_custom_metadata_list_value,
}],
defined_metadata_lists=[{
"category": model_defined_metadata_list_category,
"description": model_defined_metadata_list_description,
"key": model_defined_metadata_list_key,
"value": model_defined_metadata_list_value,
}],
defined_tags={
"Operations.CostCenter": "42",
},
description=model_description,
display_name=model_display_name,
freeform_tags={
"Department": "Finance",
},
input_schema=model_input_schema,
output_schema=model_output_schema)
package main
import (
"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/DataScience"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := DataScience.NewModel(ctx, "test_model", &DataScience.ModelArgs{
CompartmentId: pulumi.Any(compartmentId),
ProjectId: pulumi.Any(testProject.Id),
CustomMetadataLists: datascience.ModelCustomMetadataListArray{
&datascience.ModelCustomMetadataListArgs{
Category: pulumi.Any(modelCustomMetadataListCategory),
Description: pulumi.Any(modelCustomMetadataListDescription),
Key: pulumi.Any(modelCustomMetadataListKey),
Value: pulumi.Any(modelCustomMetadataListValue),
},
},
DefinedMetadataLists: datascience.ModelDefinedMetadataListArray{
&datascience.ModelDefinedMetadataListArgs{
Category: pulumi.Any(modelDefinedMetadataListCategory),
Description: pulumi.Any(modelDefinedMetadataListDescription),
Key: pulumi.Any(modelDefinedMetadataListKey),
Value: pulumi.Any(modelDefinedMetadataListValue),
},
},
DefinedTags: pulumi.StringMap{
"Operations.CostCenter": pulumi.String("42"),
},
Description: pulumi.Any(modelDescription),
DisplayName: pulumi.Any(modelDisplayName),
FreeformTags: pulumi.StringMap{
"Department": pulumi.String("Finance"),
},
InputSchema: pulumi.Any(modelInputSchema),
OutputSchema: pulumi.Any(modelOutputSchema),
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() =>
{
var testModel = new Oci.DataScience.Model("test_model", new()
{
CompartmentId = compartmentId,
ProjectId = testProject.Id,
CustomMetadataLists = new[]
{
new Oci.DataScience.Inputs.ModelCustomMetadataListArgs
{
Category = modelCustomMetadataListCategory,
Description = modelCustomMetadataListDescription,
Key = modelCustomMetadataListKey,
Value = modelCustomMetadataListValue,
},
},
DefinedMetadataLists = new[]
{
new Oci.DataScience.Inputs.ModelDefinedMetadataListArgs
{
Category = modelDefinedMetadataListCategory,
Description = modelDefinedMetadataListDescription,
Key = modelDefinedMetadataListKey,
Value = modelDefinedMetadataListValue,
},
},
DefinedTags =
{
{ "Operations.CostCenter", "42" },
},
Description = modelDescription,
DisplayName = modelDisplayName,
FreeformTags =
{
{ "Department", "Finance" },
},
InputSchema = modelInputSchema,
OutputSchema = modelOutputSchema,
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.DataScience.Model;
import com.pulumi.oci.DataScience.ModelArgs;
import com.pulumi.oci.DataScience.inputs.ModelCustomMetadataListArgs;
import com.pulumi.oci.DataScience.inputs.ModelDefinedMetadataListArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var testModel = new Model("testModel", ModelArgs.builder()
.compartmentId(compartmentId)
.projectId(testProject.id())
.customMetadataLists(ModelCustomMetadataListArgs.builder()
.category(modelCustomMetadataListCategory)
.description(modelCustomMetadataListDescription)
.key(modelCustomMetadataListKey)
.value(modelCustomMetadataListValue)
.build())
.definedMetadataLists(ModelDefinedMetadataListArgs.builder()
.category(modelDefinedMetadataListCategory)
.description(modelDefinedMetadataListDescription)
.key(modelDefinedMetadataListKey)
.value(modelDefinedMetadataListValue)
.build())
.definedTags(Map.of("Operations.CostCenter", "42"))
.description(modelDescription)
.displayName(modelDisplayName)
.freeformTags(Map.of("Department", "Finance"))
.inputSchema(modelInputSchema)
.outputSchema(modelOutputSchema)
.build());
}
}
resources:
testModel:
type: oci:DataScience:Model
name: test_model
properties:
compartmentId: ${compartmentId}
projectId: ${testProject.id}
customMetadataLists:
- category: ${modelCustomMetadataListCategory}
description: ${modelCustomMetadataListDescription}
key: ${modelCustomMetadataListKey}
value: ${modelCustomMetadataListValue}
definedMetadataLists:
- category: ${modelDefinedMetadataListCategory}
description: ${modelDefinedMetadataListDescription}
key: ${modelDefinedMetadataListKey}
value: ${modelDefinedMetadataListValue}
definedTags:
Operations.CostCenter: '42'
description: ${modelDescription}
displayName: ${modelDisplayName}
freeformTags:
Department: Finance
inputSchema: ${modelInputSchema}
outputSchema: ${modelOutputSchema}
Create Model Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new Model(name: string, args: ModelArgs, opts?: CustomResourceOptions);
@overload
def Model(resource_name: str,
args: ModelArgs,
opts: Optional[ResourceOptions] = None)
@overload
def Model(resource_name: str,
opts: Optional[ResourceOptions] = None,
model_artifact: Optional[str] = None,
artifact_content_length: Optional[str] = None,
compartment_id: Optional[str] = None,
project_id: Optional[str] = None,
description: Optional[str] = None,
defined_tags: Optional[Mapping[str, str]] = None,
artifact_content_disposition: Optional[str] = None,
display_name: Optional[str] = None,
freeform_tags: Optional[Mapping[str, str]] = None,
input_schema: Optional[str] = None,
defined_metadata_lists: Optional[Sequence[_datascience.ModelDefinedMetadataListArgs]] = None,
output_schema: Optional[str] = None,
custom_metadata_lists: Optional[Sequence[_datascience.ModelCustomMetadataListArgs]] = None,
state: Optional[str] = None)
func NewModel(ctx *Context, name string, args ModelArgs, opts ...ResourceOption) (*Model, error)
public Model(string name, ModelArgs args, CustomResourceOptions? opts = null)
type: oci:DataScience:Model
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var examplemodelResourceResourceFromDataSciencemodel = new Oci.DataScience.Model("examplemodelResourceResourceFromDataSciencemodel", new()
{
ModelArtifact = "string",
ArtifactContentLength = "string",
CompartmentId = "string",
ProjectId = "string",
Description = "string",
DefinedTags =
{
{ "string", "string" },
},
ArtifactContentDisposition = "string",
DisplayName = "string",
FreeformTags =
{
{ "string", "string" },
},
InputSchema = "string",
DefinedMetadataLists = new[]
{
new Oci.DataScience.Inputs.ModelDefinedMetadataListArgs
{
Category = "string",
Description = "string",
Key = "string",
Value = "string",
},
},
OutputSchema = "string",
CustomMetadataLists = new[]
{
new Oci.DataScience.Inputs.ModelCustomMetadataListArgs
{
Category = "string",
Description = "string",
Key = "string",
Value = "string",
},
},
State = "string",
});
example, err := DataScience.NewModel(ctx, "examplemodelResourceResourceFromDataSciencemodel", &DataScience.ModelArgs{
ModelArtifact: pulumi.String("string"),
ArtifactContentLength: pulumi.String("string"),
CompartmentId: pulumi.String("string"),
ProjectId: pulumi.String("string"),
Description: pulumi.String("string"),
DefinedTags: pulumi.StringMap{
"string": pulumi.String("string"),
},
ArtifactContentDisposition: pulumi.String("string"),
DisplayName: pulumi.String("string"),
FreeformTags: pulumi.StringMap{
"string": pulumi.String("string"),
},
InputSchema: pulumi.String("string"),
DefinedMetadataLists: datascience.ModelDefinedMetadataListArray{
&datascience.ModelDefinedMetadataListArgs{
Category: pulumi.String("string"),
Description: pulumi.String("string"),
Key: pulumi.String("string"),
Value: pulumi.String("string"),
},
},
OutputSchema: pulumi.String("string"),
CustomMetadataLists: datascience.ModelCustomMetadataListArray{
&datascience.ModelCustomMetadataListArgs{
Category: pulumi.String("string"),
Description: pulumi.String("string"),
Key: pulumi.String("string"),
Value: pulumi.String("string"),
},
},
State: pulumi.String("string"),
})
var examplemodelResourceResourceFromDataSciencemodel = new Model("examplemodelResourceResourceFromDataSciencemodel", ModelArgs.builder()
.modelArtifact("string")
.artifactContentLength("string")
.compartmentId("string")
.projectId("string")
.description("string")
.definedTags(Map.of("string", "string"))
.artifactContentDisposition("string")
.displayName("string")
.freeformTags(Map.of("string", "string"))
.inputSchema("string")
.definedMetadataLists(ModelDefinedMetadataListArgs.builder()
.category("string")
.description("string")
.key("string")
.value("string")
.build())
.outputSchema("string")
.customMetadataLists(ModelCustomMetadataListArgs.builder()
.category("string")
.description("string")
.key("string")
.value("string")
.build())
.state("string")
.build());
examplemodel_resource_resource_from_data_sciencemodel = oci.data_science.Model("examplemodelResourceResourceFromDataSciencemodel",
model_artifact="string",
artifact_content_length="string",
compartment_id="string",
project_id="string",
description="string",
defined_tags={
"string": "string",
},
artifact_content_disposition="string",
display_name="string",
freeform_tags={
"string": "string",
},
input_schema="string",
defined_metadata_lists=[oci.data_science.ModelDefinedMetadataListArgs(
category="string",
description="string",
key="string",
value="string",
)],
output_schema="string",
custom_metadata_lists=[oci.data_science.ModelCustomMetadataListArgs(
category="string",
description="string",
key="string",
value="string",
)],
state="string")
const examplemodelResourceResourceFromDataSciencemodel = new oci.datascience.Model("examplemodelResourceResourceFromDataSciencemodel", {
modelArtifact: "string",
artifactContentLength: "string",
compartmentId: "string",
projectId: "string",
description: "string",
definedTags: {
string: "string",
},
artifactContentDisposition: "string",
displayName: "string",
freeformTags: {
string: "string",
},
inputSchema: "string",
definedMetadataLists: [{
category: "string",
description: "string",
key: "string",
value: "string",
}],
outputSchema: "string",
customMetadataLists: [{
category: "string",
description: "string",
key: "string",
value: "string",
}],
state: "string",
});
type: oci:DataScience:Model
properties:
artifactContentDisposition: string
artifactContentLength: string
compartmentId: string
customMetadataLists:
- category: string
description: string
key: string
value: string
definedMetadataLists:
- category: string
description: string
key: string
value: string
definedTags:
string: string
description: string
displayName: string
freeformTags:
string: string
inputSchema: string
modelArtifact: string
outputSchema: string
projectId: string
state: string
Model Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
The Model resource accepts the following input properties:
- Artifact
Content stringLength The content length of the model_artifact.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- Compartment
Id string - (Updatable) The OCID of the compartment to create the model in.
- Model
Artifact string - The model artifact to upload. It is a ZIP archive of the files necessary to run the model. This can be done in a separate step or using cli/sdk. The Model will remain in "Creating" state until its artifact is uploaded.
- Project
Id string - The OCID of the project to associate with the model.
- Artifact
Content stringDisposition - This allows to specify a filename during upload. This file name is used to dispose of the file contents while downloading the file. Example:
attachment; filename=model-artifact.zip
- Custom
Metadata List<ModelLists Custom Metadata List> - (Updatable) An array of custom metadata details for the model.
- Defined
Metadata List<ModelLists Defined Metadata List> - (Updatable) An array of defined metadata details for the model.
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example:
{"Operations.CostCenter": "42"}
- Description string
- (Updatable) A short description of the model.
- Display
Name string - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information. Example:
My Model
- Dictionary<string, string>
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example:
{"Department": "Finance"}
- Input
Schema string - Input schema file content in String format
- Output
Schema string - Output schema file content in String format
- State string
- The state of the model.
- Artifact
Content stringLength The content length of the model_artifact.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- Compartment
Id string - (Updatable) The OCID of the compartment to create the model in.
- Model
Artifact string - The model artifact to upload. It is a ZIP archive of the files necessary to run the model. This can be done in a separate step or using cli/sdk. The Model will remain in "Creating" state until its artifact is uploaded.
- Project
Id string - The OCID of the project to associate with the model.
- Artifact
Content stringDisposition - This allows to specify a filename during upload. This file name is used to dispose of the file contents while downloading the file. Example:
attachment; filename=model-artifact.zip
- Custom
Metadata []ModelLists Custom Metadata List Args - (Updatable) An array of custom metadata details for the model.
- Defined
Metadata []ModelLists Defined Metadata List Args - (Updatable) An array of defined metadata details for the model.
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example:
{"Operations.CostCenter": "42"}
- Description string
- (Updatable) A short description of the model.
- Display
Name string - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information. Example:
My Model
- map[string]string
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example:
{"Department": "Finance"}
- Input
Schema string - Input schema file content in String format
- Output
Schema string - Output schema file content in String format
- State string
- The state of the model.
- artifact
Content StringLength The content length of the model_artifact.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- compartment
Id String - (Updatable) The OCID of the compartment to create the model in.
- model
Artifact String - The model artifact to upload. It is a ZIP archive of the files necessary to run the model. This can be done in a separate step or using cli/sdk. The Model will remain in "Creating" state until its artifact is uploaded.
- project
Id String - The OCID of the project to associate with the model.
- artifact
Content StringDisposition - This allows to specify a filename during upload. This file name is used to dispose of the file contents while downloading the file. Example:
attachment; filename=model-artifact.zip
- custom
Metadata List<ModelLists Custom Metadata List> - (Updatable) An array of custom metadata details for the model.
- defined
Metadata List<ModelLists Defined Metadata List> - (Updatable) An array of defined metadata details for the model.
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example:
{"Operations.CostCenter": "42"}
- description String
- (Updatable) A short description of the model.
- display
Name String - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information. Example:
My Model
- Map<String,String>
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example:
{"Department": "Finance"}
- input
Schema String - Input schema file content in String format
- output
Schema String - Output schema file content in String format
- state String
- The state of the model.
- artifact
Content stringLength The content length of the model_artifact.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- compartment
Id string - (Updatable) The OCID of the compartment to create the model in.
- model
Artifact string - The model artifact to upload. It is a ZIP archive of the files necessary to run the model. This can be done in a separate step or using cli/sdk. The Model will remain in "Creating" state until its artifact is uploaded.
- project
Id string - The OCID of the project to associate with the model.
- artifact
Content stringDisposition - This allows to specify a filename during upload. This file name is used to dispose of the file contents while downloading the file. Example:
attachment; filename=model-artifact.zip
- custom
Metadata ModelLists Custom Metadata List[] - (Updatable) An array of custom metadata details for the model.
- defined
Metadata ModelLists Defined Metadata List[] - (Updatable) An array of defined metadata details for the model.
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example:
{"Operations.CostCenter": "42"}
- description string
- (Updatable) A short description of the model.
- display
Name string - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information. Example:
My Model
- {[key: string]: string}
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example:
{"Department": "Finance"}
- input
Schema string - Input schema file content in String format
- output
Schema string - Output schema file content in String format
- state string
- The state of the model.
- artifact_
content_ strlength The content length of the model_artifact.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- compartment_
id str - (Updatable) The OCID of the compartment to create the model in.
- model_
artifact str - The model artifact to upload. It is a ZIP archive of the files necessary to run the model. This can be done in a separate step or using cli/sdk. The Model will remain in "Creating" state until its artifact is uploaded.
- project_
id str - The OCID of the project to associate with the model.
- artifact_
content_ strdisposition - This allows to specify a filename during upload. This file name is used to dispose of the file contents while downloading the file. Example:
attachment; filename=model-artifact.zip
- custom_
metadata_ Sequence[datascience.lists Model Custom Metadata List Args] - (Updatable) An array of custom metadata details for the model.
- defined_
metadata_ Sequence[datascience.lists Model Defined Metadata List Args] - (Updatable) An array of defined metadata details for the model.
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example:
{"Operations.CostCenter": "42"}
- description str
- (Updatable) A short description of the model.
- display_
name str - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information. Example:
My Model
- Mapping[str, str]
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example:
{"Department": "Finance"}
- input_
schema str - Input schema file content in String format
- output_
schema str - Output schema file content in String format
- state str
- The state of the model.
- artifact
Content StringLength The content length of the model_artifact.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- compartment
Id String - (Updatable) The OCID of the compartment to create the model in.
- model
Artifact String - The model artifact to upload. It is a ZIP archive of the files necessary to run the model. This can be done in a separate step or using cli/sdk. The Model will remain in "Creating" state until its artifact is uploaded.
- project
Id String - The OCID of the project to associate with the model.
- artifact
Content StringDisposition - This allows to specify a filename during upload. This file name is used to dispose of the file contents while downloading the file. Example:
attachment; filename=model-artifact.zip
- custom
Metadata List<Property Map>Lists - (Updatable) An array of custom metadata details for the model.
- defined
Metadata List<Property Map>Lists - (Updatable) An array of defined metadata details for the model.
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example:
{"Operations.CostCenter": "42"}
- description String
- (Updatable) A short description of the model.
- display
Name String - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information. Example:
My Model
- Map<String>
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example:
{"Department": "Finance"}
- input
Schema String - Input schema file content in String format
- output
Schema String - Output schema file content in String format
- state String
- The state of the model.
Outputs
All input properties are implicitly available as output properties. Additionally, the Model resource produces the following output properties:
- Artifact
Content stringMd5 - Artifact
Last stringModified - Created
By string - The OCID of the user who created the model.
- Empty
Model bool - Id string
- The provider-assigned unique ID for this managed resource.
- Time
Created string - The date and time the resource was created in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- Artifact
Content stringMd5 - Artifact
Last stringModified - Created
By string - The OCID of the user who created the model.
- Empty
Model bool - Id string
- The provider-assigned unique ID for this managed resource.
- Time
Created string - The date and time the resource was created in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- artifact
Content StringMd5 - artifact
Last StringModified - created
By String - The OCID of the user who created the model.
- empty
Model Boolean - id String
- The provider-assigned unique ID for this managed resource.
- time
Created String - The date and time the resource was created in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- artifact
Content stringMd5 - artifact
Last stringModified - created
By string - The OCID of the user who created the model.
- empty
Model boolean - id string
- The provider-assigned unique ID for this managed resource.
- time
Created string - The date and time the resource was created in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- artifact_
content_ strmd5 - artifact_
last_ strmodified - created_
by str - The OCID of the user who created the model.
- empty_
model bool - id str
- The provider-assigned unique ID for this managed resource.
- time_
created str - The date and time the resource was created in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- artifact
Content StringMd5 - artifact
Last StringModified - created
By String - The OCID of the user who created the model.
- empty
Model Boolean - id String
- The provider-assigned unique ID for this managed resource.
- time
Created String - The date and time the resource was created in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
Look up Existing Model Resource
Get an existing Model resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: ModelState, opts?: CustomResourceOptions): Model
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
artifact_content_disposition: Optional[str] = None,
artifact_content_length: Optional[str] = None,
artifact_content_md5: Optional[str] = None,
artifact_last_modified: Optional[str] = None,
compartment_id: Optional[str] = None,
created_by: Optional[str] = None,
custom_metadata_lists: Optional[Sequence[_datascience.ModelCustomMetadataListArgs]] = None,
defined_metadata_lists: Optional[Sequence[_datascience.ModelDefinedMetadataListArgs]] = None,
defined_tags: Optional[Mapping[str, str]] = None,
description: Optional[str] = None,
display_name: Optional[str] = None,
empty_model: Optional[bool] = None,
freeform_tags: Optional[Mapping[str, str]] = None,
input_schema: Optional[str] = None,
model_artifact: Optional[str] = None,
output_schema: Optional[str] = None,
project_id: Optional[str] = None,
state: Optional[str] = None,
time_created: Optional[str] = None) -> Model
func GetModel(ctx *Context, name string, id IDInput, state *ModelState, opts ...ResourceOption) (*Model, error)
public static Model Get(string name, Input<string> id, ModelState? state, CustomResourceOptions? opts = null)
public static Model get(String name, Output<String> id, ModelState state, CustomResourceOptions options)
Resource lookup is not supported in YAML
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Artifact
Content stringDisposition - This allows to specify a filename during upload. This file name is used to dispose of the file contents while downloading the file. Example:
attachment; filename=model-artifact.zip
- Artifact
Content stringLength The content length of the model_artifact.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- Artifact
Content stringMd5 - Artifact
Last stringModified - Compartment
Id string - (Updatable) The OCID of the compartment to create the model in.
- Created
By string - The OCID of the user who created the model.
- Custom
Metadata List<ModelLists Custom Metadata List> - (Updatable) An array of custom metadata details for the model.
- Defined
Metadata List<ModelLists Defined Metadata List> - (Updatable) An array of defined metadata details for the model.
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example:
{"Operations.CostCenter": "42"}
- Description string
- (Updatable) A short description of the model.
- Display
Name string - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information. Example:
My Model
- Empty
Model bool - Dictionary<string, string>
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example:
{"Department": "Finance"}
- Input
Schema string - Input schema file content in String format
- Model
Artifact string - The model artifact to upload. It is a ZIP archive of the files necessary to run the model. This can be done in a separate step or using cli/sdk. The Model will remain in "Creating" state until its artifact is uploaded.
- Output
Schema string - Output schema file content in String format
- Project
Id string - The OCID of the project to associate with the model.
- State string
- The state of the model.
- Time
Created string - The date and time the resource was created in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- Artifact
Content stringDisposition - This allows to specify a filename during upload. This file name is used to dispose of the file contents while downloading the file. Example:
attachment; filename=model-artifact.zip
- Artifact
Content stringLength The content length of the model_artifact.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- Artifact
Content stringMd5 - Artifact
Last stringModified - Compartment
Id string - (Updatable) The OCID of the compartment to create the model in.
- Created
By string - The OCID of the user who created the model.
- Custom
Metadata []ModelLists Custom Metadata List Args - (Updatable) An array of custom metadata details for the model.
- Defined
Metadata []ModelLists Defined Metadata List Args - (Updatable) An array of defined metadata details for the model.
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example:
{"Operations.CostCenter": "42"}
- Description string
- (Updatable) A short description of the model.
- Display
Name string - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information. Example:
My Model
- Empty
Model bool - map[string]string
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example:
{"Department": "Finance"}
- Input
Schema string - Input schema file content in String format
- Model
Artifact string - The model artifact to upload. It is a ZIP archive of the files necessary to run the model. This can be done in a separate step or using cli/sdk. The Model will remain in "Creating" state until its artifact is uploaded.
- Output
Schema string - Output schema file content in String format
- Project
Id string - The OCID of the project to associate with the model.
- State string
- The state of the model.
- Time
Created string - The date and time the resource was created in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- artifact
Content StringDisposition - This allows to specify a filename during upload. This file name is used to dispose of the file contents while downloading the file. Example:
attachment; filename=model-artifact.zip
- artifact
Content StringLength The content length of the model_artifact.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- artifact
Content StringMd5 - artifact
Last StringModified - compartment
Id String - (Updatable) The OCID of the compartment to create the model in.
- created
By String - The OCID of the user who created the model.
- custom
Metadata List<ModelLists Custom Metadata List> - (Updatable) An array of custom metadata details for the model.
- defined
Metadata List<ModelLists Defined Metadata List> - (Updatable) An array of defined metadata details for the model.
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example:
{"Operations.CostCenter": "42"}
- description String
- (Updatable) A short description of the model.
- display
Name String - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information. Example:
My Model
- empty
Model Boolean - Map<String,String>
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example:
{"Department": "Finance"}
- input
Schema String - Input schema file content in String format
- model
Artifact String - The model artifact to upload. It is a ZIP archive of the files necessary to run the model. This can be done in a separate step or using cli/sdk. The Model will remain in "Creating" state until its artifact is uploaded.
- output
Schema String - Output schema file content in String format
- project
Id String - The OCID of the project to associate with the model.
- state String
- The state of the model.
- time
Created String - The date and time the resource was created in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- artifact
Content stringDisposition - This allows to specify a filename during upload. This file name is used to dispose of the file contents while downloading the file. Example:
attachment; filename=model-artifact.zip
- artifact
Content stringLength The content length of the model_artifact.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- artifact
Content stringMd5 - artifact
Last stringModified - compartment
Id string - (Updatable) The OCID of the compartment to create the model in.
- created
By string - The OCID of the user who created the model.
- custom
Metadata ModelLists Custom Metadata List[] - (Updatable) An array of custom metadata details for the model.
- defined
Metadata ModelLists Defined Metadata List[] - (Updatable) An array of defined metadata details for the model.
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example:
{"Operations.CostCenter": "42"}
- description string
- (Updatable) A short description of the model.
- display
Name string - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information. Example:
My Model
- empty
Model boolean - {[key: string]: string}
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example:
{"Department": "Finance"}
- input
Schema string - Input schema file content in String format
- model
Artifact string - The model artifact to upload. It is a ZIP archive of the files necessary to run the model. This can be done in a separate step or using cli/sdk. The Model will remain in "Creating" state until its artifact is uploaded.
- output
Schema string - Output schema file content in String format
- project
Id string - The OCID of the project to associate with the model.
- state string
- The state of the model.
- time
Created string - The date and time the resource was created in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- artifact_
content_ strdisposition - This allows to specify a filename during upload. This file name is used to dispose of the file contents while downloading the file. Example:
attachment; filename=model-artifact.zip
- artifact_
content_ strlength The content length of the model_artifact.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- artifact_
content_ strmd5 - artifact_
last_ strmodified - compartment_
id str - (Updatable) The OCID of the compartment to create the model in.
- created_
by str - The OCID of the user who created the model.
- custom_
metadata_ Sequence[datascience.lists Model Custom Metadata List Args] - (Updatable) An array of custom metadata details for the model.
- defined_
metadata_ Sequence[datascience.lists Model Defined Metadata List Args] - (Updatable) An array of defined metadata details for the model.
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example:
{"Operations.CostCenter": "42"}
- description str
- (Updatable) A short description of the model.
- display_
name str - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information. Example:
My Model
- empty_
model bool - Mapping[str, str]
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example:
{"Department": "Finance"}
- input_
schema str - Input schema file content in String format
- model_
artifact str - The model artifact to upload. It is a ZIP archive of the files necessary to run the model. This can be done in a separate step or using cli/sdk. The Model will remain in "Creating" state until its artifact is uploaded.
- output_
schema str - Output schema file content in String format
- project_
id str - The OCID of the project to associate with the model.
- state str
- The state of the model.
- time_
created str - The date and time the resource was created in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- artifact
Content StringDisposition - This allows to specify a filename during upload. This file name is used to dispose of the file contents while downloading the file. Example:
attachment; filename=model-artifact.zip
- artifact
Content StringLength The content length of the model_artifact.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
- artifact
Content StringMd5 - artifact
Last StringModified - compartment
Id String - (Updatable) The OCID of the compartment to create the model in.
- created
By String - The OCID of the user who created the model.
- custom
Metadata List<Property Map>Lists - (Updatable) An array of custom metadata details for the model.
- defined
Metadata List<Property Map>Lists - (Updatable) An array of defined metadata details for the model.
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example:
{"Operations.CostCenter": "42"}
- description String
- (Updatable) A short description of the model.
- display
Name String - (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information. Example:
My Model
- empty
Model Boolean - Map<String>
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example:
{"Department": "Finance"}
- input
Schema String - Input schema file content in String format
- model
Artifact String - The model artifact to upload. It is a ZIP archive of the files necessary to run the model. This can be done in a separate step or using cli/sdk. The Model will remain in "Creating" state until its artifact is uploaded.
- output
Schema String - Output schema file content in String format
- project
Id String - The OCID of the project to associate with the model.
- state String
- The state of the model.
- time
Created String - The date and time the resource was created in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
Supporting Types
ModelCustomMetadataList, ModelCustomMetadataListArgs
- Category string
- (Updatable) Category of model metadata which should be null for defined metadata.For custom metadata is should be one of the following values "Performance,Training Profile,Training and Validation Datasets,Training Environment,other".
- Description string
- (Updatable) Description of model metadata
- Key string
- (Updatable) Key of the model Metadata. The key can either be user defined or Oracle Cloud Infrastructure defined. List of Oracle Cloud Infrastructure defined keys:
- useCaseType
- libraryName
- libraryVersion
- estimatorClass
- hyperParameters
- testartifactresults
- Value string
(Updatable) Allowed values for useCaseType: binary_classification, regression, multinomial_classification, clustering, recommender, dimensionality_reduction/representation, time_series_forecasting, anomaly_detection, topic_modeling, ner, sentiment_analysis, image_classification, object_localization, other
Allowed values for libraryName: scikit-learn, xgboost, tensorflow, pytorch, mxnet, keras, lightGBM, pymc3, pyOD, spacy, prophet, sktime, statsmodels, cuml, oracle_automl, h2o, transformers, nltk, emcee, pystan, bert, gensim, flair, word2vec, ensemble, other
- Category string
- (Updatable) Category of model metadata which should be null for defined metadata.For custom metadata is should be one of the following values "Performance,Training Profile,Training and Validation Datasets,Training Environment,other".
- Description string
- (Updatable) Description of model metadata
- Key string
- (Updatable) Key of the model Metadata. The key can either be user defined or Oracle Cloud Infrastructure defined. List of Oracle Cloud Infrastructure defined keys:
- useCaseType
- libraryName
- libraryVersion
- estimatorClass
- hyperParameters
- testartifactresults
- Value string
(Updatable) Allowed values for useCaseType: binary_classification, regression, multinomial_classification, clustering, recommender, dimensionality_reduction/representation, time_series_forecasting, anomaly_detection, topic_modeling, ner, sentiment_analysis, image_classification, object_localization, other
Allowed values for libraryName: scikit-learn, xgboost, tensorflow, pytorch, mxnet, keras, lightGBM, pymc3, pyOD, spacy, prophet, sktime, statsmodels, cuml, oracle_automl, h2o, transformers, nltk, emcee, pystan, bert, gensim, flair, word2vec, ensemble, other
- category String
- (Updatable) Category of model metadata which should be null for defined metadata.For custom metadata is should be one of the following values "Performance,Training Profile,Training and Validation Datasets,Training Environment,other".
- description String
- (Updatable) Description of model metadata
- key String
- (Updatable) Key of the model Metadata. The key can either be user defined or Oracle Cloud Infrastructure defined. List of Oracle Cloud Infrastructure defined keys:
- useCaseType
- libraryName
- libraryVersion
- estimatorClass
- hyperParameters
- testartifactresults
- value String
(Updatable) Allowed values for useCaseType: binary_classification, regression, multinomial_classification, clustering, recommender, dimensionality_reduction/representation, time_series_forecasting, anomaly_detection, topic_modeling, ner, sentiment_analysis, image_classification, object_localization, other
Allowed values for libraryName: scikit-learn, xgboost, tensorflow, pytorch, mxnet, keras, lightGBM, pymc3, pyOD, spacy, prophet, sktime, statsmodels, cuml, oracle_automl, h2o, transformers, nltk, emcee, pystan, bert, gensim, flair, word2vec, ensemble, other
- category string
- (Updatable) Category of model metadata which should be null for defined metadata.For custom metadata is should be one of the following values "Performance,Training Profile,Training and Validation Datasets,Training Environment,other".
- description string
- (Updatable) Description of model metadata
- key string
- (Updatable) Key of the model Metadata. The key can either be user defined or Oracle Cloud Infrastructure defined. List of Oracle Cloud Infrastructure defined keys:
- useCaseType
- libraryName
- libraryVersion
- estimatorClass
- hyperParameters
- testartifactresults
- value string
(Updatable) Allowed values for useCaseType: binary_classification, regression, multinomial_classification, clustering, recommender, dimensionality_reduction/representation, time_series_forecasting, anomaly_detection, topic_modeling, ner, sentiment_analysis, image_classification, object_localization, other
Allowed values for libraryName: scikit-learn, xgboost, tensorflow, pytorch, mxnet, keras, lightGBM, pymc3, pyOD, spacy, prophet, sktime, statsmodels, cuml, oracle_automl, h2o, transformers, nltk, emcee, pystan, bert, gensim, flair, word2vec, ensemble, other
- category str
- (Updatable) Category of model metadata which should be null for defined metadata.For custom metadata is should be one of the following values "Performance,Training Profile,Training and Validation Datasets,Training Environment,other".
- description str
- (Updatable) Description of model metadata
- key str
- (Updatable) Key of the model Metadata. The key can either be user defined or Oracle Cloud Infrastructure defined. List of Oracle Cloud Infrastructure defined keys:
- useCaseType
- libraryName
- libraryVersion
- estimatorClass
- hyperParameters
- testartifactresults
- value str
(Updatable) Allowed values for useCaseType: binary_classification, regression, multinomial_classification, clustering, recommender, dimensionality_reduction/representation, time_series_forecasting, anomaly_detection, topic_modeling, ner, sentiment_analysis, image_classification, object_localization, other
Allowed values for libraryName: scikit-learn, xgboost, tensorflow, pytorch, mxnet, keras, lightGBM, pymc3, pyOD, spacy, prophet, sktime, statsmodels, cuml, oracle_automl, h2o, transformers, nltk, emcee, pystan, bert, gensim, flair, word2vec, ensemble, other
- category String
- (Updatable) Category of model metadata which should be null for defined metadata.For custom metadata is should be one of the following values "Performance,Training Profile,Training and Validation Datasets,Training Environment,other".
- description String
- (Updatable) Description of model metadata
- key String
- (Updatable) Key of the model Metadata. The key can either be user defined or Oracle Cloud Infrastructure defined. List of Oracle Cloud Infrastructure defined keys:
- useCaseType
- libraryName
- libraryVersion
- estimatorClass
- hyperParameters
- testartifactresults
- value String
(Updatable) Allowed values for useCaseType: binary_classification, regression, multinomial_classification, clustering, recommender, dimensionality_reduction/representation, time_series_forecasting, anomaly_detection, topic_modeling, ner, sentiment_analysis, image_classification, object_localization, other
Allowed values for libraryName: scikit-learn, xgboost, tensorflow, pytorch, mxnet, keras, lightGBM, pymc3, pyOD, spacy, prophet, sktime, statsmodels, cuml, oracle_automl, h2o, transformers, nltk, emcee, pystan, bert, gensim, flair, word2vec, ensemble, other
ModelDefinedMetadataList, ModelDefinedMetadataListArgs
- Category string
- (Updatable) Category of model metadata which should be null for defined metadata.For custom metadata is should be one of the following values "Performance,Training Profile,Training and Validation Datasets,Training Environment,other".
- Description string
- (Updatable) Description of model metadata
- Key string
- (Updatable) Key of the model Metadata. The key can either be user defined or Oracle Cloud Infrastructure defined. List of Oracle Cloud Infrastructure defined keys:
- useCaseType
- libraryName
- libraryVersion
- estimatorClass
- hyperParameters
- testartifactresults
- Value string
(Updatable) Allowed values for useCaseType: binary_classification, regression, multinomial_classification, clustering, recommender, dimensionality_reduction/representation, time_series_forecasting, anomaly_detection, topic_modeling, ner, sentiment_analysis, image_classification, object_localization, other
Allowed values for libraryName: scikit-learn, xgboost, tensorflow, pytorch, mxnet, keras, lightGBM, pymc3, pyOD, spacy, prophet, sktime, statsmodels, cuml, oracle_automl, h2o, transformers, nltk, emcee, pystan, bert, gensim, flair, word2vec, ensemble, other
- Category string
- (Updatable) Category of model metadata which should be null for defined metadata.For custom metadata is should be one of the following values "Performance,Training Profile,Training and Validation Datasets,Training Environment,other".
- Description string
- (Updatable) Description of model metadata
- Key string
- (Updatable) Key of the model Metadata. The key can either be user defined or Oracle Cloud Infrastructure defined. List of Oracle Cloud Infrastructure defined keys:
- useCaseType
- libraryName
- libraryVersion
- estimatorClass
- hyperParameters
- testartifactresults
- Value string
(Updatable) Allowed values for useCaseType: binary_classification, regression, multinomial_classification, clustering, recommender, dimensionality_reduction/representation, time_series_forecasting, anomaly_detection, topic_modeling, ner, sentiment_analysis, image_classification, object_localization, other
Allowed values for libraryName: scikit-learn, xgboost, tensorflow, pytorch, mxnet, keras, lightGBM, pymc3, pyOD, spacy, prophet, sktime, statsmodels, cuml, oracle_automl, h2o, transformers, nltk, emcee, pystan, bert, gensim, flair, word2vec, ensemble, other
- category String
- (Updatable) Category of model metadata which should be null for defined metadata.For custom metadata is should be one of the following values "Performance,Training Profile,Training and Validation Datasets,Training Environment,other".
- description String
- (Updatable) Description of model metadata
- key String
- (Updatable) Key of the model Metadata. The key can either be user defined or Oracle Cloud Infrastructure defined. List of Oracle Cloud Infrastructure defined keys:
- useCaseType
- libraryName
- libraryVersion
- estimatorClass
- hyperParameters
- testartifactresults
- value String
(Updatable) Allowed values for useCaseType: binary_classification, regression, multinomial_classification, clustering, recommender, dimensionality_reduction/representation, time_series_forecasting, anomaly_detection, topic_modeling, ner, sentiment_analysis, image_classification, object_localization, other
Allowed values for libraryName: scikit-learn, xgboost, tensorflow, pytorch, mxnet, keras, lightGBM, pymc3, pyOD, spacy, prophet, sktime, statsmodels, cuml, oracle_automl, h2o, transformers, nltk, emcee, pystan, bert, gensim, flair, word2vec, ensemble, other
- category string
- (Updatable) Category of model metadata which should be null for defined metadata.For custom metadata is should be one of the following values "Performance,Training Profile,Training and Validation Datasets,Training Environment,other".
- description string
- (Updatable) Description of model metadata
- key string
- (Updatable) Key of the model Metadata. The key can either be user defined or Oracle Cloud Infrastructure defined. List of Oracle Cloud Infrastructure defined keys:
- useCaseType
- libraryName
- libraryVersion
- estimatorClass
- hyperParameters
- testartifactresults
- value string
(Updatable) Allowed values for useCaseType: binary_classification, regression, multinomial_classification, clustering, recommender, dimensionality_reduction/representation, time_series_forecasting, anomaly_detection, topic_modeling, ner, sentiment_analysis, image_classification, object_localization, other
Allowed values for libraryName: scikit-learn, xgboost, tensorflow, pytorch, mxnet, keras, lightGBM, pymc3, pyOD, spacy, prophet, sktime, statsmodels, cuml, oracle_automl, h2o, transformers, nltk, emcee, pystan, bert, gensim, flair, word2vec, ensemble, other
- category str
- (Updatable) Category of model metadata which should be null for defined metadata.For custom metadata is should be one of the following values "Performance,Training Profile,Training and Validation Datasets,Training Environment,other".
- description str
- (Updatable) Description of model metadata
- key str
- (Updatable) Key of the model Metadata. The key can either be user defined or Oracle Cloud Infrastructure defined. List of Oracle Cloud Infrastructure defined keys:
- useCaseType
- libraryName
- libraryVersion
- estimatorClass
- hyperParameters
- testartifactresults
- value str
(Updatable) Allowed values for useCaseType: binary_classification, regression, multinomial_classification, clustering, recommender, dimensionality_reduction/representation, time_series_forecasting, anomaly_detection, topic_modeling, ner, sentiment_analysis, image_classification, object_localization, other
Allowed values for libraryName: scikit-learn, xgboost, tensorflow, pytorch, mxnet, keras, lightGBM, pymc3, pyOD, spacy, prophet, sktime, statsmodels, cuml, oracle_automl, h2o, transformers, nltk, emcee, pystan, bert, gensim, flair, word2vec, ensemble, other
- category String
- (Updatable) Category of model metadata which should be null for defined metadata.For custom metadata is should be one of the following values "Performance,Training Profile,Training and Validation Datasets,Training Environment,other".
- description String
- (Updatable) Description of model metadata
- key String
- (Updatable) Key of the model Metadata. The key can either be user defined or Oracle Cloud Infrastructure defined. List of Oracle Cloud Infrastructure defined keys:
- useCaseType
- libraryName
- libraryVersion
- estimatorClass
- hyperParameters
- testartifactresults
- value String
(Updatable) Allowed values for useCaseType: binary_classification, regression, multinomial_classification, clustering, recommender, dimensionality_reduction/representation, time_series_forecasting, anomaly_detection, topic_modeling, ner, sentiment_analysis, image_classification, object_localization, other
Allowed values for libraryName: scikit-learn, xgboost, tensorflow, pytorch, mxnet, keras, lightGBM, pymc3, pyOD, spacy, prophet, sktime, statsmodels, cuml, oracle_automl, h2o, transformers, nltk, emcee, pystan, bert, gensim, flair, word2vec, ensemble, other
Import
Models can be imported using the id
, e.g.
$ pulumi import oci:DataScience/model:Model test_model "id"
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
oci
Terraform Provider.